期刊文献+

Design of Pd/B_4C aperiodic multilayers for 8–12 nm region with flat reflectivity profile 被引量:2

Design of Pd/B_4C aperiodic multilayers for 8–12 nm region with flat reflectivity profile
原文传递
导出
摘要 The Pd/B4C multilayer is a promising candidate for high reflectance mirrors operating in the 8-12 nm extreme ultraviolet wavelength region. To extend the working bandwidth beyond the L-edge of silcon, we theoretically design broadband Pd/B4 C multilayers. We discuss the influence of the desired reflectance of the plateau, number of bilayers, and the real structural parameters, including the interface widths, layer density, and thickness deviation, on the reflectivity profile. Assuming the interface width to be 0.6 rim, we design aperiodic multilayers for broad wavebands of 9.0-10.0, 8.5-10.5, and 8.0-11.0 nm, with average reflectivities of 3.1%, 5.0%, and 9.5%, respectively. The Pd/B4C multilayer is a promising candidate for high reflectance mirrors operating in the 8-12 nm extreme ultraviolet wavelength region. To extend the working bandwidth beyond the L-edge of silcon, we theoretically design broadband Pd/B4 C multilayers. We discuss the influence of the desired reflectance of the plateau, number of bilayers, and the real structural parameters, including the interface widths, layer density, and thickness deviation, on the reflectivity profile. Assuming the interface width to be 0.6 rim, we design aperiodic multilayers for broad wavebands of 9.0-10.0, 8.5-10.5, and 8.0-11.0 nm, with average reflectivities of 3.1%, 5.0%, and 9.5%, respectively.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第7期102-106,共5页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11443007 and 11505129) the NSAF(No.U1430131) the National Key Scientific Instrument and Equipment Development Project(Nos.2012YQ13012505 and 2012YQ24026402) the Shanghai Pujiang Program(No.15PJ1408000)
关键词 REFLECTION
  • 相关文献

参考文献30

  • 1P. Boerner, C. Edwards, J. Lemen, A. Rausch, C. Schrijver, R. Shine, L. Shing, R. Stern, T. Tarbell, A. Title, C. J. Wolfson, R. Soufli, E. Spiller, E. Gullikson, D. McKenzie, D. Windt, L. Golub, W. Podgorski, P. Testa, and M. Weber, Solar Phys. 275, 41 (2012).
  • 2E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, Prog. Surf. Sci. 86, 255 (2011).
  • 3A. J. Corso, P. Zuppella, D. L. Windt, M. Zangrando, and M. G. Pelizzo, Opt. Express 20, 8006 (2012).
  • 4S. Yi, B. Mu, J. Zhu, X. Wang, W. Li, Z. Wang, P. He, W. Wang, Z. Fang, and S. Fu, Chin. Opt. Lett. 12, 083401 (2014).
  • 5S. Yi, B. Mu, X. Wang, L. Jiang, J. Zhu, Z. Wang, P. He, Z. Fang, W. Wang, and S. Fu, Chin. Opt. Lett. 12, 093401 (2014).
  • 6M. Lorenc, M. Rybansky, and I. Dorotovi5, Solar Phys. 281, 611 (2012).
  • 7W. A. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Bahr, and R. Brinkmann, Nat. Photon. 1, 336 (2007).
  • 8M. Yamamoto and T. Namioka, Appl. Opt. 31, 1622 (1992).
  • 9E. A. Vishnyakov, M. S. Luginin, A. S. Pirozhkov, E. N. Ragozin, and S. A. Startsev, Quantum Electron. 41, 75 (2011).
  • 10I. V. Kozhevnikov, I. N. Bukreeva, and E. Ziegler, Nucl. Instr. Meth. Phys. Res. 460, 424 (2001).

同被引文献6

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部