期刊文献+

催化剂制备方法对乙醇合成1,3-丁二烯的影响 被引量:1

Effect of catalyst preparation method on ethanol to 1,3-butadiene
在线阅读 下载PDF
导出
摘要 用湿混法(M)、溶胶凝胶-酸法(A)、溶胶凝胶-碱法(B)分别制备一系列镁硅混合氧化物,用X射线粉末衍射(XRD)、氮气吸附脱附(BET)、场发射扫描电镜(FE-SEM)及程序升温脱附(TPD)对其进行表征。在固定床反应器上比较了用不同方法制备催化剂的性能。考察了反应温度、N2体积空速(GHSV)和乙醇液相空速(LHSV)对乙醇转化率和1,3-丁二烯选择性的影响。结果表明:以溶胶凝胶-酸法(A)制备的镁硅配比为1催化剂(Mg Si-A^(-1))具有高比表面和明显的晶格特征,其催化性能最好。在425℃,N2GHSV为2 000 h^(-1),乙醇LHSV为2.8 h^(-1)条件下反应,乙醇转化率达44.9%,1,3-丁二烯的选择性为27.7%。溶胶凝胶-酸法(A)制备的催化剂(Mg Si-A^(-1))具有较高的稳定性,在80 h内催化性能没有明显下降。 A series of mixed oxides of magnesium and silicon are prepared by wet-kneading method( M),sol-gel acid method( A) and sol-gel base method( B),respectively,which are characterized with XRD,BET,FE-SEM and TPD. The performance of catalysts prepared by different methods is compared on a fixed bed reactor. The effects of reaction temperature,N2 GHSV and ethanol LHSV on ethanol conversion and 1,3-butadiene selectivity are investigated.The results show that the catalyst prepared by the sol-gel acid method( A) with the Mg / Si ratio of 1 has the high specific surface area and clear crystal feature,and exhibits the best catalytic performance. Under the conditions of 425 ℃,N2 GHSV of 2 000 h^(-1)and ethanol LHSV of 2. 8 h^(-1),the ethanol conversion and 1,3-butadiene selectivity are 44. 9% and27. 7%,respectively. The catalyst prepared by the sol-gel acid method( A) Mg Si-A^(-1) displays the highest stability and it can be used for 80 hours without noticeable loss of activity.
出处 《现代化工》 CAS CSCD 北大核心 2016年第7期104-108,共5页 Modern Chemical Industry
关键词 乙醇 1 3-丁二烯 催化剂制备方法 镁硅混合氧化物 催化剂评价 ehanol 1 3-butadiene catalyst preparation method mixed oxides of magnesium and silicon catalyst evaluation
  • 相关文献

参考文献17

  • 1White W C. Butadiene production process overview[ J] . Chem BiolInteract,2007 ,166( 1 /2/3) : 10 - 14.
  • 2许江,宋帮勇,杨利斌,孔祥冰,景媛媛.多产丁二烯的裂解原料及工艺条件优选研究[J].现代化工,2012,32(11):91-93. 被引量:3
  • 3Corson B B,Jones H E,Welling C E,et al. Butadiene from ethyl al-cohol. catalysis in the one-and two-stop processes [ J ]. Ind KnChem,1950,42(2) :359 -373.
  • 4高美香,刘宗章,姜浩锡,张敏华.由乙醇合成1,3-丁二烯的新型催化剂[J].石油化工,2015,44(10):1157-1161. 被引量:3
  • 5Tsuchida T,Sakunia S,Takeguchi T,ef al. Direct synthesis of /i-bu-tanol from ethanol over nonstoichiometric hydroxyapatite [ J ]. In<lEng Chem Res,2006 ,45 (25 ) :8634 -8642.
  • 6Tsuchida T, Kuboa J , Yoshioka T,ef al. Reaction of ethanol overhydroxyapatite affected by Ca/P ratio of catalyst [ J ] . Journal of Ca-talysis ,2008 ,259(2) :183 -189.
  • 7Angelici C, Weckhuysen B M, Bruijnincx P C A. Chemocatalyticconversion of ethanol into butadiene and other bulk chemicals [ J ] .Chem Sus Chem,2013,6(9) :1595 - 1614.
  • 8Angelici C, Velthoen M E Z, Weckhuysen B M. et al. Effect oipreparation method and CuO promotion in the conversion of ethanoiinto 1 ,3-butadiene over Si02-Mg0 catalysts[ J]. Chem Sus Chem,2014,7(9) ;2505 -2515.
  • 9Angelici C ,Velthoen M E Z, Weckhuysen B M,et at. Influence oiacid-base properties on the Lebedev ethanol-to-butadiene pro(-esscatalyzed by Si02 -MgO materials [ J ]. Catalysis Science & Technol-ogy ,2015 ,5(5) :2869 -2879.
  • 10Brambilla R, Radtke C, Dos Santos J H Z, et al. Sili<;a-rnagnesiamixed oxides prepared by a modified Stober route : Slmctural an(itextural aspects [ J ]. Powder Technology,2010,198 ( 3 ) : 337 一346.

二级参考文献35

  • 1王迎春,陈国鹏,高步良,郝兴仁.富含1,3-丁二烯的裂解碳四选择加氢工艺研究[J].石油化工,2005,34(9):831-834. 被引量:11
  • 2陈辉,陆善祥.生物质制燃料乙醇[J].石油化工,2007,36(2):107-117. 被引量:24
  • 3王松汉.乙烯装置技术与运行[M].北京:中国石化出版社,2010.
  • 4邹仁望.石油化工裂解原理与技术[M].北京:化学工业出版社,1981.
  • 5郭莹.乙烯原料优化途径的分析与展望.石油化工,2008,:91-93.
  • 6Pramanik M, Kunzru D. Coke formation in the pyrolysis of n-hexane [J]. Ind Eng Chem Des Bey,1985,24(3) ,1275 -1281.
  • 7Froment G F. Coke formation in the thermal cracking of hydrocar- bons[J]. Rev Chem Eng,1990,6(4) :293 -328.
  • 8Kopinke F D, Zimmermann G, Nowak S. On the mechanism of coke formation in steam cracking- Conclusions from results obtained by tracer experiments[ J]. Carbon, 1988,26 ( 2 ) : 117 - 124.
  • 9Kopinke F D, Zimmermann G, Reyniers G C, et al. Relative rates of coke formation from hydrocarbons in steam cracking of naphtha:2. Paraffins, naphthenes, mono-, di-, and cycloolefins, and acetylenes[ J ]. Ind Eng Chem Res, 1993,32 ( 1 ) : 56 - 61.
  • 10Kopinke F D, Zimmermann G, Reyniers G C, et al. Relative rates of coke formation from hydrocarbons in steam cracking of naphtha:3. Aromatic hydrocarbons [ J ]. Ind Eng Chem Res, 1993,32 ( 11 ) : 2620 - 2625.

共引文献4

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部