期刊文献+

基于长短期记忆多维主题情感倾向性分析模型 被引量:21

Multidimensional topic model for oriented sentiment analysis based on long short-term memory
在线阅读 下载PDF
导出
摘要 针对中文微博全局性情感倾向分类的准确性不高的问题,提出基于长短期记忆模型的多维主题模型(MT-LSTM)。该模型是一个多层多维序列计算模型,由多维长短期记忆(LSTM)细胞网络组成,适用于处理向量、数组以及更高维度的数据。该模型首先将微博语句分为多个层次进行分析,纵向以三维长短期记忆模型(3D-LSTM)处理词语及义群的情感倾向,横向以多维长短期记忆模型(MD-LSTM)多次处理整条微博的情感倾向;然后根据主题标签的高斯分布判断情感倾向;最后将几次判断结果进行加权得到最终的分类结果。实验结果表明,该算法平均查准率达91%,最高可达96.5%;中性微博查全率高达50%以上。与递归神经网络(RNN)模型相比,该算法F-测量值提升40%以上;与无主题划分的方法相比,细致的主题划分可将F-测量值提升11.9%。所提算法具有较好的综合性能,能够有效提升中文微博情感倾向分析的准确性,同时减少训练数据量,降低匹配计算的复杂度。 Concerning the low accuracy of global Chinese microblog sentiment classification, a new model was introduced from the perspective of Multi-dimensional Topics based on Long Short-Term Memory (MT-LSTM). The proposed model was constituted by hierarchical muhidimensional sequence computation, it was composed of Long Short-Term Memory (LSTM) cell network and suitable for processing vector, array and higher dimensional data. Firstly, microblog was divided into muhiple levels for analysis. To upward spread, sentiment tendencies of words and phrases were analyzed by three-Dimensional Long Short-Term Memory (3D-LSTM); to rightward spread, sentiment tendencies of the whole microblog were analyzed by Multi- Dimensional Long Short-Term Memory ( MD-LSTM). Secondly, sentiment tendencies were analyzed by Gaussian distribution in topic sign. Finally, the classification result was obtained by weighting above analyses. The experimental results show that the average precision of the proposed model reached 91%, up to 96.5%, and the recall of the neutral microblog reached 50%. In the comparison experiments with Recursive Neural Network (RNN) model, the F-measure of MT-LSTM was enhanced above 40%; compared with no topic division, the F-measure of MT-LSTM was enhanced by 11.9% because of meticulous topic division. The proposed model has good overall performance, it can effectively improve the accuracy of analyzing Chinese microblog sentiment tendencies and reduce the amount of training data and the complexity of matching calculation.
出处 《计算机应用》 CSCD 北大核心 2016年第8期2252-2256,共5页 journal of Computer Applications
基金 江西省科技支撑计划项目(20112BBE50045)~~
关键词 中文微博 情感倾向分析 长短期记忆 多层多维模型 主题标签 Chinese microblog oriented sentiment analysis Long Short-Term Memory (LSTM) hierarchical muhidimensional model topic sign
  • 相关文献

参考文献15

  • 1SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep mod- els for semantic compositionality over a sentiment treebank [ C]// EMNLP 2013: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2013:1631-1642.
  • 2KOUTNIK J, GREFF K, GOMEZ F, et al. A clockwork RNN [ C]// ICML 2014: Proceedings of the 31st International Confer- ence on Machine Learning. [ S. 1. ] : International Machine Learning Society, 2014:1863 - 1871.
  • 3STOLLENGA M F, BYEON W, LIWICKI M, et al. Parallel multi- dimensional LSTM, with application to fast biomedical volumetric image segmentation [ C]//NIPS 2015: Proceedings of the Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2015.
  • 4LI J, LUONG M T, JURAFSKY D. A hierarchical neural autoen- coder for paragraphs and documents [ EB/OL]. [ 2015-11-09]. ht- tp://arxiv, org/pdf/1506. 01057v2. pdf.
  • 5SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learn- ing with neural networks [ C]// NIPS 2014: Proceedings of the Ad- vances in Neural Iifformation Processing Systems. Cambridge, MA: MIT Press, 2014:3104-3112.
  • 6GRAVES A. Generating sequences with recurrent neural networks [ EB/ OL]. [2015-08-24]. http://arxiv, org/pdf/1308.0850v5, pdf.
  • 7HOCHREITER S, SCHMIDHUBER J. Long short-term memory [ J]. Neural Computation, 1997, 9(8) : 1735 - 1780.
  • 8ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural net- work regularization [ EB/OL]. [ 2015- 08- 24]. http://arxiv, org/ pdf/1409. 2329v5. pdf.
  • 9袁丁,周延泉,鲁鹏,等.多方法融合的微博情感分析[c]//第六届中文倾向性分析评测报告.昆明:中国中文信息学会信息检索专业委员会,2014:35—39.
  • 10TURNEY P D, PANTEL P. From frequency to meaning : Vector space models of semantics [ J]. Journal of Artificial Intelligence Re- search, 2010, 37(1): 141-188.

二级参考文献5

共引文献7

同被引文献139

引证文献21

二级引证文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部