期刊文献+

制备方法对ZnO-ZrO_2催化剂上乙醇转化制异丁烯反应的影响 被引量:1

Influence of Preparative Method on ZnO-ZrO_2 Catalyst for Ethanol Conversion to Isobutene
在线阅读 下载PDF
导出
摘要 采用恒p H值共沉淀法和非恒p H值共沉淀法制备了Zn O-Zr O2混合氧化物催化剂,考察了制备方法对乙醇转化制异丁烯反应的影响,并用低温N2吸附、X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、拉曼光谱、紫外-可见漫反射光谱、NH3程序升温脱附和CO2程序升温脱附对催化剂进行了表征。研究结果表明,相比于非恒p H值共沉淀法制备的Zn O-Zr O2,恒p H值共沉淀法制备的Zn O-Zr O2具有较高的比表面积,更多的酸量和碱量,从而表现出更好的乙醇转化制异丁烯催化性能。在450℃和乙醇质量空速0.2 h-1的反应条件下,两种催化剂的乙醇转化率均为100%,恒p H值共沉淀法制备的催化剂的异丁烯得率为54.9%,明显高于非恒p H值共沉淀法制备的催化剂(45.7%),并且稳定性也是前者明显高于后者。 ZnO-ZrO2 mixed oxide catalysts were prepared using either a constant or variable pH value co-precipitation method. The obtained catalyst samples were characterized using N2 adsorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, ultraviolet-visible diffuse reflectance, NH3 temperature-programmed desorption and CO2 temperature-programmed desorption. Compared to the ZnO-ZrO2 mixed oxide prepared using the variable pH value method, the corresponding mixed oxide prepared using the constant pH value method had a higher surface area and a higher number of acid sites and basic sites, thus exhibiting a superior catalytic performance. When the reaction temperature was 450℃ and the weight hourly space velocity of ethanol was 0.2 h-1, the conversion of ethanol for both catalysts was 100%. The ZnO-ZrO2 catalyst prepared using the constant pH value method gave 54.9% yield of isobutene, which was obviously greater than the yield obtained using the corresponding catalyst prepared using the variable pH value method (45.7%). Moreover, the former catalyst exhibited obviously higher stability than the latter one for the isobutene production from ethanol conversion.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第8期1391-1397,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21273043) 上海市科委资助项目(No.13DZ2275200)资助
关键词 混合氧化物 制备方法 乙醇 异丁烯 酸碱性 mixed oxide preparative method ethanol isobutene acidity and basicity
  • 相关文献

参考文献39

  • 1Serrano-Ruiz J C, Luque R, Sepulveda-Escribano A. Chem. Soc. Rev., 2011,40(11):5266-5281.
  • 2van Leeuwen B N M, van der Wulp A M, Duijnstee I. Appl. Microb iol. Biotechnol., 2012,93(4):1377-1387.
  • 3Huber G W, Iborra S, Corma A. Chem. Rev., 2006,106(9): 4044-4098.
  • 4Chheda J N, Dumesic J A. Catal. Today, 2007,123(1/2/3/4): 59-70.
  • 5Goldemberg J. Science, 2007,315(5813):808-810.
  • 6Sanchez O J, Cardona C A. Bioresource Technol., 2008,99 (13):5270-5295.
  • 7Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M F, et al. Trends Biotechnol., 2006,24(12):549-556.
  • 8Alvira P, Tomas-Pejo E, Ballesteros M, et al. Bioresource Technol., 2010,101(13):4851-4861.
  • 9Deluga G A, Salge J R, Schmidt L D, et al. Science, 2004, 303(5660):993 -997.
  • 10Murthy R S, Patnaik P, Sidheswaran P, et al. J. Catal., 1988, 109(2):298-302.

同被引文献57

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部