期刊文献+

一种基于特征拓扑约束的图像配准算法 被引量:4

An Algorithm of Image Registration Based Topology Restraint of Feature
在线阅读 下载PDF
导出
摘要 针对传统RANSAC算法在特征点提纯方面效率不高、迭代计算复杂等缺点,提出先利用拓扑约束进行特征点提纯,得到初始匹配点集,再通过RANSAC原理进行特征点精确提纯,最后通过最小二乘法利用精确匹配点求解单应矩阵进行图像配准。实验结果表明:拓扑约束提纯算法计算效率高,能有效提高RANSAC算法的正确匹配率和时间效率,可得到更多更稳定的匹配点,提高图像配准的精度。 To improve the efficiency and complexity of traditional RANSAC algorithm in purifying matching points,a strategy by using topology restraint is put forward.Firstly utilize topology restraint between feature points to get initial matching pairs and then precisely purify by using RANSAC algorithm.Then holography matrix is obtained by Least Squares with the exact matching pairs for image registration.Experimental results show that,compared with traditional RANSAC algorithm,the proposed method performs well in efficiency while improves the robust matching rate and more stable matching pairs can be acquired to improve the precision of image registration.
出处 《测绘与空间地理信息》 2016年第9期158-160,共3页 Geomatics & Spatial Information Technology
关键词 特征点提纯 拓扑约束 误匹配 匹配率 purifying matching points topological constraints mismatching matching rate
  • 相关文献

参考文献10

二级参考文献46

  • 1王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 2FAUGERAS O. Three-Dimensional Computer Vi- sion: A Geometric Viewpoint [M]. Boston: MIT Press, 1993.
  • 3MIKOLAJCZYK K, TUYTELAARS T, SCHMID C,et al.. A comparison of affine region detectors [J]. Int. J. Comput. Vis. , 2005,65:43-72.
  • 4LOWE D G. Distinctive image features from scale- invariant key points[J]. IJCV, 2004, 60 (2) : 91- 110.
  • 5MOREL J M, YU G. ASIFT A new framework for fully affine invariant image comparison[J]. SI- AM Journal on Imaging Sciences, 2009,2 (2) : 438- 468.
  • 6FAN Q, BARNARD K,AMIR A,et al.. Matching Slides to presentation videos using SIFT and scene background matching[C]. Proceedings of the 8th ACM International Workshop on Multimedia In- formation Retrieval, 2006 : 239-248.
  • 7KIM J, SEITZ S, AGRAWALA M. Video-based docu- ment tracking: Unifying your physical and electronic desktops[C]. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technolo- gy, 2004 : 99-107.
  • 8VACCHETTI L,LEPETIT V,FUA P. Stable real- time 3D tracking using online and offline informa- tion[J]. IEEE Trans. Pattern Anal. Mach. In- tell. , 2004,26:1385-1391.
  • 9BAY H, TUYTELAARS T, VAN GOOL L. Surf.. Speeded up robust features[J]. Computer Vision- ECCV 2006, Springer-Verlag, Berlin, Heidel- berg, 2006:404-417.
  • 10Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102.

共引文献174

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部