期刊文献+

1.5岁儿童头部有限元模型的建立及验证 被引量:1

Development and Validation of the 1.5-Year-Old Child Head FE Model
在线阅读 下载PDF
导出
摘要 利用1.5岁儿童头部MRI和CT扫描数据,通过医学扫描断层图像三维重构和有限元前处理,建立一个具有高度解剖学细节的1.5岁儿童头部有限元模型并赋予其最新公布的儿童颅骨材料参数。利用这个头部模型重构Loyd开展的儿童尸体头部跌落试验(17个样本),将仿真输出的加速度历程曲线和尸体试验曲线的加速度峰值、脉冲持续时间等进行对比。结果表明,该模型能够反映跌落工况中儿童头部的受载情况,具有良好的生物逼真度。30 cm跌落高度下,枕部撞击时得到最大HIC值357;不同跌落工况的头部颅内压力分析显示,儿童头部遭受撞击时,颅内压的分布满足经典的撞击压-对撞压产生理论;相比前额撞击和枕部撞击,颅顶撞击和侧向顶骨撞击的撞击侧正压力峰值较大,最大值分别为241.6和157.3 k Pa,遭受同侧脑挫裂伤的风险较高;枕部撞击工况下,撞击对侧的负压力峰值大于其他撞击工况,最大值为-74.4 k Pa,遭受对侧脑挫裂伤的风险较高。跌落高度增加时,HIC和颅内压力峰值增大,损伤风险随之增加。 In this paper,a 1. 5-year-old child head finite element( FE) model with detailed anatomical structure was developed through medical 3D reconstruction and FE preprocess of geometrical data were extracted from a set of MRICT scan images of a 1. 5-year-old child. The material properties of skull and sutures reported in latest pediatric cadaver tests study were implemented into the FE model. Then the model was used to reconstruct the child head drop test( including 17 samples) conducted by Loyd. Results of simulations showed the FE model had a high biofidelity and was able to reflect the load condition of child head in real drop scenes.Maximum HIC( 357) was predicted for occipital impact. Analysis of intracranial pressure predicted for different impact locations revealed that the pressure distribution was consistent with the typical pattern of coup-contrecoup injury. The model predicted higher peak coup pressure( up to 241. 6 and 157. 3 k Pa) for vertical impact and parietal impact which leads to a higher risk of coup brain contusion. The maximum negative pressure(- 74. 4k Pa) was observed in occipital impact which contributes to occurrence of contrecoup brain contusion. Besides,the injury risk increases with higher drop distance.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第4期435-444,共10页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(11172099)
关键词 1.5岁儿童 有限元模型 尸体试验 颅内压 1.5-year-old child finite element model cadaver test intracranial pressure
  • 相关文献

参考文献39

  • 1Langlois JA, Sattin RW. Traumatic brain injury in the UnitedStates : research and programs of the Centers for Disease Controland Prevention [ J ]. Journal of Head Trauma Rehabilitation,2005,20(3) :187 -194.
  • 2Kraus JF, Rock A, Hemyari P. Brain injuries among infants,children, adolescents, and young adults [ J ]. American Journal ofDiseases of Children, 1990,144 (6) :684 - 691.
  • 3Kennard MA. Relation of age to motor impairment in man and insubhuman primates [ J ]. Archives of Neurology & Psychiatry,1940 ’44(2) -.377 -397.
  • 4Yang KH, Hu Jingwen, White NA, et al. Development ofnumerical models for injury biomechanics research : a review of 50years of publications in the Stapp Car Crash Conference [ J ].Stapp Car Crash Journal,2006 , SO :429 -490.
  • 5McPherson GK, Kriewall TJ. The elastic modulus of fetal cranialbone : a first step towards an understanding of the biomechanics offetal head molding [ J]. Journal of Biomechanics,1980 ,13(1) :9-16.
  • 6Margulies SS, Thibauit KL. Infant skull and suture properties:measurements and implications for mechanisms of pediatric braininjury [ J ]. Journal of Biomechanical Engineering, 2000, 122(4):364 -371.
  • 7Davis MT, Loyd AM, Shen HY,et al. The mechanical andmorphological properties of 6 year-old cranial bone [ J ]. Journalof Biomechanics,2012,45(15) :2493 -2498.
  • 8Chatelin S, Vappou J, Roth S, et al. Towards child versus adultbrain mechanical properties [ J ]. Journal of the MechanicalBehavior of Biomedical Materials,2012 ,6 : 166 - 173.
  • 9Wang Jiawen, Zou Donghua, Li Zhengdong, et al. Mechanicalproperties of cranial bones and sutures in 1 -2-year-old infants[J]. Medical Science Monitor: International Medical Journal ofExperimental and Clinical Research,2014,20 :1808 ~ 1813.
  • 10Weber W. Experimental studies of skull fractures in infants [ J ].Journal of Legal Medicine, 1983 ,92(2) :87 -94.

二级参考文献67

  • 1Mertz HJ. A procedure for normalizing impact response data [ J]. SAE Technical Paper 840884, 1984.
  • 2Roth S, Raul JS, Ruan J, et al. Limitation of scaling methods in child head finite element modeling [ J]. Vehicle Safety, 2007, 2 (4) : 404 -421.
  • 3Dekaban A. Table of cranial and orbital measurements, cranial volume and derived indices in males and females from 7 day to years of age [J]. Annals of Neurology, 1977, 2(6): 485 - 491.
  • 4Roche AF. Increase in cranial thickness during growth [ J ]. Human Biology, 1953, 25(2): 81 -92.
  • 5Roth S, Vappou J, Raul JS, et al. Child head injury criteria investigation through numerical simulation of real world trauma. Computer Methods and Programs in Biomedicine, 2008, 93( 1 ) : 32 - 45.
  • 6Galford JE, McElhaney JH. A viscoelastic study of scalp, brain and dura [ J]. Journal of Biomechanics, 1970, 3 : 211 - 222.
  • 7McElhaney JH, Melvin JW, Robert VL, et al. Dynamic characteristics of the tissue of the head [ M ] // Kenedi RM eds. Perspectives in Biomedical Engineering. London: MacMillan Press, 1973.
  • 8Mc Pherson GK, Kriewall TJ. The elastic modulus of fetal cranial bone : a first step toward an understanding of the Biomechanics of fetal head molding [J]. Journal of Biomechanics 1981, 13: 9- 16.
  • 9Al Bsharat A, Hardy WN, Yang KH, et al. Brain/skull relative displacement magnitude due to blunt head impact: new experimental data and model [ C]//Proceedings of 43rd Stapp Car Crash Conference, Society of Automotive Engineers. Warrendale: SAE International, 1999: Paper No. 99SC22.
  • 10Nakamachi E, Yamamoto H, Okuyama T, et al. The Experiment and EE crash analysis of human head and evaluation of damage [ C ].//The 12th JSME Autumn Bioengineering Conference and Seminar, Nagoya: JSME ,2001:19-20.

共引文献20

同被引文献378

引证文献1

二级引证文献392

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部