期刊文献+

无线传感器网络的系统化自适应建模 被引量:4

Adaptive Systemic Modeling for Wireless Sensor Networks
在线阅读 下载PDF
导出
摘要 无线传感器网络的系统能耗制约着全网络的综合应用能力,其中节点有限的能量从根本上影响着传感器网络效能。针对无线传感器网络的全局能耗问题,提出了基于径向基函数神经网络以及状态空间表达的系统化建模方法。考虑到无线传感器网络的拓扑结构与分级关系,采用径向基函数神经网络自适应实时规划系统。鉴于各传感器节点对数据的不同处理方式与能耗密切相关,对全系统能耗建立系统化矩阵模型。仿真分析表明该模型可根据实际应用背景调整设置完成全局优化。 Global energy consumption in wireless sensor networks restricts the application of the entire networks, including the impact of limited energy capacity of a single node to the system fundamental- ly. This paper presents a systemic modeling approach for wireless sensor network based on radial basis function neural networks and status-sphere expression. In consideration about the topology and hierarchical structure of WSN, it introduces real-time adjusting of radial basis function neural net- works, and establishes matrix model for systematic energy consumption adaptively. Results prove that this model performs effective global optimization by adjusting parameters according to real application circumstances.
出处 《数据采集与处理》 CSCD 北大核心 2016年第4期832-837,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61162010)资助项目 海南大学教育教学研究课题(Hdjy1325)资助项目 海南大学青年基金课题(Qnjj1186)资助项目 海南省研究生创新科研课题(Hys2014-18)资助项目 海南省自然科学基金(614232)资助项目 海南省产学研一体化专项基金项目(CXY20140002)资助项目
关键词 无线传感器网络 径向基函数神经网络 控制理论 动态优化 wireless sensor networks radial basis function neural networks control theory dynamic optimization
  • 相关文献

参考文献6

二级参考文献91

  • 1宋光明,庄伟,魏志刚,宋爱国.用于未知环境的移动传感器网络自部署算法[J].华南理工大学学报(自然科学版),2006,34(9):26-30. 被引量:9
  • 2Antunes C M, Oliveira A L. Temporal data mining: an overview. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001. 1-13
  • 3Han J W, Kamber M. Data Mining: Concepts and Techniques (Second Edition). Boston: Morgan Kaufmann, 2006
  • 4Ljung L. System Identification: Theory for the User (Second Edition). New Jersey: Prentice-Hall, 1999
  • 5Gevers M. A personal view of the development of system identification. IEEE Control Systems Magazine, 2006, 26(6): 93-105
  • 6Narendra K S, Parthasavathy K. Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27
  • 7Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863
  • 8Sadegh N. A perceptron network for functional identification and control of nonlinear systems. IEEE Transactions on Neural Networks, 1993, 4(6): 982-988
  • 9Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, Ioannou P A. High-order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 1995, 6(2): 422-431
  • 10Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451

共引文献45

同被引文献19

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部