期刊文献+

On a Nonlinear Model in Adiabatic Evolutions

On a Nonlinear Model in Adiabatic Evolutions
原文传递
导出
摘要 In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.
作者 孙杰 路松峰 孙杰;路松峰(School of Computer Science and Technology,Huazhong University of Science and Technology;College of Educational Information and Technology,Hubei Normal University)
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第8期207-210,共4页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos.61402188 and 61173050 the support from the China Postdoctoral Science Foundation under Grant No.2014M552041
关键词 quantum adiabatic algorithm adiabatic evolution quantum computing 非线性模型 绝热演化 时间复杂度 搜索问题 初始状态 时间效率 插值算法
  • 相关文献

参考文献12

  • 1E. Farhi, J. Goldstone, S. Gutmann, et al., Science 292 (2001) 472.
  • 2A. Mizel, D.A. Lidar, and M. Mitchell, Phys. Rev. Lett. 99 (2007) 070502.
  • 3D. Aharonov, W. van. Dam, J. Kempe, et al., SIAM J. Comput. 37(1) (2007) 166.
  • 4A. Messiah, Quantum Mechanics, Dover, New York (1999).
  • 5S. Jansen, M.B. Ruskai, and R. Seiler, J. Math. Phys. 48 (2007) 102111.
  • 6E. Farhi, J. Goldstone, S. Gutmann, et al., Int. J. Quant. Inform. 6(3) (2008) 503.
  • 7M. Andrecut and M.K. Ali, Int. J. Quant. Inform. 2(4) (2004) 447.
  • 8M. Andrecut and M.K. Ali, Int. J. Theor. Phys. 43(4) (2004) 925.
  • 9S. Das, R. Kobes, and G. Kunstatter, J. Phys. A: Math. Gen. 36 (2003) 2839.
  • 10J. Sun, S.F. Lu, and F. Liu, Sci. China-Phys. Mech. As- tron. 55 (2012) 1630.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部