期刊文献+

三支近似概念格中基于对象-概念辨识矩阵的属性约简方法 被引量:9

Object-concept discernibility matrix based approach to attribute reduction in three-way approximate concept lattice
原文传递
导出
摘要 属性约简是概念格理论的一个重要研究内容,基于辨识矩阵计算约简是一种经典方法,传统辨识矩阵的计算复杂度为O(nl2).鉴于此,在三支近似概念格模型中,构造一种对象-概念辨识矩阵,其计算复杂度为O(mnl),一般情况下,m远远小于l,辨识矩阵的计算复杂度大大降低,并结合概念格的偏序关系进一步简化对象-概念辨识矩阵.通过理论分析和实验结果表明了所提出方法的高效性. Attribute reduction is a core issue in formal concept analysis(FCA). Of all attribute reduction approaches, the ones based on discernibility matrix and discernibility function are of most importance. However, in the traditional discernibility matrices, the comparisons between every two concepts result in a high computation complexity: O(nl2). Therefore, an object-concept discernibility matrix is constructed to obtain the reducts of the incomplete contexts, and the computation complexity is reduced to O(mnl). In most cases, m is much smaller than l, so O(mnl) ≤ O(nl2). The partial order of the concept lattice is further used to simplify the object-concept discernibility matrix. Theoretical analysis and experimental results show the effectiveness of the proposed methods.
出处 《控制与决策》 EI CSCD 北大核心 2016年第10期1779-1784,共6页 Control and Decision
基金 国家自然科学基金项目(61272060 61379114) 重庆市自然科学基金重点项目(cstc2013jj B40003)
关键词 概念格 三支决策 不完备形式背景 属性约简 辨识矩阵 concept lattice three-waydecisions incomplete context attribute reductiom discernibility matrix
  • 相关文献

参考文献2

二级参考文献37

  • 1[1]Wille, R., Restructuring lattice theory: an approach based on hierarchies of concepts, in Ordered Sets (ed. Rival, I.), Dordrecht-Boston: Reidel, 1982, 445-470.
  • 2[2]Oosthuizen, G. D., The Application of Concept Lattice to Machine Learning, Technical Report, University of Pretoria, South Africa, 1996.
  • 3[3]Ho, T. B., Incremental conceptual clustering in the framework of Galois lattice, in KDD: Techniques and Applications (eds. Lu, H., Liu, H., Motoda, H.,), Singapore: World Scientific, 1997, 49-64.
  • 4[4]Kent, R. E., Bowman, C. M., Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface, Technical Report, University of Arkansas, 1995.
  • 5[5]Corbett, D., Burrow, A. L., Knowledge reuse in SEED exploiting conceptual graphs, International Conference on Conceptual Graphs (ICCS'96), Sydney, University of New South Wales, 1996, 56-60.
  • 6[6]Schmitt, I., Saake, G., Merging Inheritance hierarchies for scheme integration based on concept lattices [EB/OL]. http: //www.mathematic.tu-darm stadt.de/ags/ag1.
  • 7[7]Siff, M., Reps, T., Identifying modules via concept analysis, in International Conference on Software Maintenance (eds. Harrold, M. J., Visaggio, G.), Bari, Italy, Washington, DC: IEEE Computer Society, 1997, 170-179.
  • 8[8]Hu, K. Y., Lu, Y. C., Shi, C. Y., Advances in concept lattice and its application, Journal of Tsinghua University (Science & Technology), 2000, 40(9): 77-81.
  • 9[9]Ho, T. B., An approach to concept formation based on formal concept analysis, IEICE Trans. Information and Systems, 1995, E782D (5): 553-559.
  • 10[10]Carpineto, C., Romano, G., Galois: an order-theoretic approach to conceptual clustering, in Proceedings of ICML 293 (ed. Utgoff, P.), Amherst: Elsevier, 1993, 33-40.

共引文献256

同被引文献76

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部