期刊文献+

Yb^(3+)-Tb^(3+)共掺杂β-NaYF_4纳米晶的上转换发光特性研究 被引量:6

Up-Conversion Luminescence of Yb^(3+)-Tb^(3+) Co-doped β-NaYF_4 Nanocrystals
原文传递
导出
摘要 采用水热合成法,以油酸作乳化剂成功制备了Yb^(3+)-Tb^(3+)共掺杂β-NaYF_4纳米晶。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱仪对所制备的样品进行表征。在980 nm红外半导体激光器的激发下,不仅观察到Yb^(3+)/Tb^(3+)共掺杂NaYF_4纳米晶对应于Tb^(3+)离子5D3→7FI(I=6,5和4)和5D4→7FI(I=6,5,4和3)能级跃迁从红色到紫外的上转换荧光,同时还观察到了杂质离子Er^(3+)的发光。实验发现随着Yb^(3+)浓度的相对减小和Er^(3+)浓度的相对增大,489 nm对应于Tb^(3+)离子5D4→7F6能级跃迁的上转换蓝光得到增强。在Yb^(3+)-Tb^(3+)-Er^(3+)系统中,简要地讨论了从Yb^(3+)到Er^(3+)再到Tb^(3+)的能量传递过程。 Yb^3+ -Tb^3+ co-doped NaYF4 nanocrystals were synthesized by employing a facile hydrothermal method using oleic acid as stabilizing agent. The as-prepared nanocrystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence spectroscopy. The up-conversion emissions of Tb^3 + , corresponding to ^5 D3→^7 FI ( I = 6, 5, 4 ) and ^5 D4→^7 FI ( I = 6, 5, 4, 3 ) were observed under 980 nm infrared diode laser excitation. In addition, several emissions of Er^3 + impurity were also observed. With the decreasing of Yb^3 + and increasing of Er^3+ , the blue emission (489 nm) enhanced, which originate from the ^5D4→^7F6 transitions of Tb^3+ ions. The possible UC mechanisms in Yb^3+ -Tb^3+ -Er^3+ system were discussed briefly.
出处 《中国稀土学报》 CAS CSCD 北大核心 2016年第5期544-548,共5页 Journal of the Chinese Society of Rare Earths
基金 高校优秀青年人才支持计划重点项目(gxyq ZD2016329 gxyq ZD2016328) 滁州学院科研启动基金项目(2014qd024)资助
关键词 上转换 纳米晶 NAYF4 稀土 up-conversion nanocrystals NaYF4 rare earths
  • 相关文献

参考文献1

二级参考文献13

  • 1Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions. Opt. Lett., 1995, 20: 1014.
  • 2Downing E, Hesseiink L, Ralston J, Macfarlane R. A three- Color, solid-state, three-dimensional display. Science, 1996, 273:1185.
  • 3Liu M, Lu Y L, Xie Z B, Chow G M. Enhancing near-in- frared solar cell response using upconverting transparent ceramics. Sol. Enerkn, Mater. Sol. Cells', 2011, 95: 800.
  • 4Haase M, Schafer H. Upconverting nanoparticles. Angew Chem. hit. Ed., 2011, 50: 5808.
  • 5Ma D K, Yang D P, Jiang J L, Cai P, Huang S M. One-dimensional hexagonal-phase NaYF4: Controlled synthesis, self-assembly, and morphology-dependent up- conversion luminescence properties. CstEngComm, 2010, 12: 1650.
  • 6Sun J Y, Xian J B, Zhang X Y, Du H Y. Size and shape controllable synthesis of oil-dispersible BaYFs:yb3+/Er3 upconversion fluorescent nanocrystals. J. Alloys Compd., 2011,509: 2348.
  • 7Shan J N, Jl.l Y G. A single-step synthesis and the kineticmechanism for monodisperse and hexagonal-phase NaYF4: Yb, Er upconversion nanophosphors. Nanotechnohv, 2009, 20: 275603.
  • 8Mai H X, Zhang Y W, Sun L D, Yan C H. Size- and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Pt),s. Chem C, 2007, 111: 13730.
  • 9Abel K A, Boyer J C, Veggel F C J M V. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc., 2009, 13: 14644.
  • 10Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen XY, Liu X G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater., 2011, 10: 968.

共引文献6

同被引文献37

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部