期刊文献+

基于边界逼近的肺实质分割方法 被引量:5

Lung CT Image Segmentation Based on Border Approximation
在线阅读 下载PDF
导出
摘要 肺部CT图像的分割是计算机辅助诊断系统处理的一个重要环节,其分割的结果影响到医生的诊断与进一步的分析。由于胸膜结节的灰度与肺实质外围的灰度相近,运用传统的分割方法无法正确分割出此类病灶。将胸膜结节包含肺实质一起分割出来,使计算机辅助诊断系统能够对此类病灶做进一步的分析。提出一种结合Graham算法以及边界逼近的方法,对肺实质的轮廓进行修正,进而得到修正的二值模板;将该模板与原图像做乘运算,得到包含胸膜结节的肺实质。运用所提出的方法,对公开数据库LIDC中68张含病灶的CT样本图像做处理,通过与传统方法的对比以及对算法的过分割比例、欠分割比例以及准确性的分析,得到准确率为98.5%,平均过分割比例为1.35%,平均欠分割比例为0.51%,证明了该方法的有效性。 Segmentation of the lungs in chest-computed tomography( CT) image performs as an important preprocessing step in Computer-aided detection( CAD). The result brings a great effect for the further analysis and diagnosis. As the intensity of pleural nodule is close to the peripheral lung parenchyma,these lesions are not able to be segmented correctly using traditional method. The aim of this paper is to segment the lung including juxtapleural nodules in order to provide this focus for CAD system for the further analysis. This paper proposed a method that combined the Graham algorithm with border matching approximation to correct the contour of lung, and obtained the mask and multiply it by original image to segment lung image with juxtapleural nodules. Processing the 68 sample CT images including nodules from LIDC( Lung Image Database Consortium) through adopting new method proposed in this paper,and comparing this method with a traditional one,and analyzing the accuracy of this method and the rate of oversegmentation and undersegmentation,the accuracy of 98. 5%, the oversegmentation rate of 1. 35% and the undersegmentation of 0. 51% were determined,which proved the effectiveness of this method.
作者 黄智定 孙红
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第5期513-518,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61170277 61472256) 上海市教委科研创新重点项目(12zz137) 沪江基金(C14002)
关键词 医学图像处理 肺结节 计算机辅助诊断 lung segmentation lung nodule computer-aided detection
  • 相关文献

参考文献12

  • 1Mansoor A, Bagcl U, Foster B, et al. Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends [ J]. Radiographics, 2015, 35 (4) :1056 - 1076.
  • 2Samuel G Armato III, Maryetlen L. Giger, computerized detection of pulmonary nodules on CT Scans [ J ]. Radio Graphics, 1999,19 : 1303 - 1311.
  • 3Guo PX, Guo H, Dai J. A Novel lung segmentation amt boundary correction method [ C ]//Biomedical Engineering and Informatics. Tianjin: IEEE, 2009:1 - 4.
  • 4Shen S, Bui AAT, Cong J, et al. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy [ J ]. Computers in Biology and Medicine, 2015,57 : 139 - 149.
  • 5李金,郑冰,梁洪,邓玉林.基于改进凸包算法的肺实质分割研究[J].中国生物医学工程学报,2013,32(4):484-490. 被引量:12
  • 6Pu J, Roos JC, Napel S, et al. Adaptive border marching algorithm: automatic lung segmentation on chest CT images [ J 3. Computerized Medical Imaging & Graphics, 2008, 32 (6) :452 - 462.
  • 7Chunming L, Chenyang X, Changfeng G, et al. Distance regularized level set evolution and its application to image segmentation. [ J ]. IEEE Transactions on Image Processing, 2010, 19(12) :3243 -3254.
  • 8Dai S, Lu K, Dong J, et al. A novel approach of lung segmentation on chest CT images using graph cuts [ J ]. Neurocomputing, 2015, 168:799 - 807.
  • 9Ju W, Xiang D, Zhang B, et al. Random walk and graph cut for co-segmentation of lung tumor on PET-CT images [ J ]. IEEE Transactions on Image Processing, 2015, 24( 12 ) :5854 - 5867.
  • 10Tasci E, Ugur A. Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs [ J ]. Journal of Medical Systems,2015, 39(5) : 1 - 13.

二级参考文献11

  • 1Pu JT, Roos J, Yi CA, et al. Adaptive border marching algorithm: Automatic lung segmentation on chest CT images [J]. Computerized Medical Imaging and Graphics, 2008, 32 (6) : 452 - 462.
  • 2Wang SJ, Summers RM. Machine learning and radiology [J]. Medical Image Analysis, 2012,16: 933 - 951.
  • 3Gu YH, Kumar V, Hall LO, et al. Automated delineation of lung tumors from ct images using a single click ensemble segmentation approach [J]. Pattern Recognition, In Press, Accepted Manuscript, Available online II October 2012.
  • 4Armato SG, Sensakovic WF. Automated lung segmentation for thoracic CT: Impact on computer-aided diagnosis [J]. Academ ic Radiology, 2004, 11 (9): 1011 - 1021.
  • 5Hu S, Hoffman EA,Reinhardt JM. A utomatic lung segmentation for accurate quantitation of volumetric X-Ray CT images [J]. IEEE Trans on Med Imaging , 2001, 20: 490 - 498.
  • 6Bellotti R, De-Carlo F', Gargano G, et al. A CA D system for nodules detection in low-does lung CTs based on region growing and a new active contour model [J]. Medical Physics. 2007, 34: 10 -14.
  • 7Kanazawa K, Kawata Y, Niki N, et al. Computer-aided diagnosis for pulmonary nodules based on helical CT images [J]. Compute Med Imaging Graphics, 1998, 22: 157 - 167.
  • 8刘宏兵,邬长安,周文勇.基于二维凸包的TSP算法[J].计算机工程与设计,2009,30(8):1954-1956. 被引量:14
  • 9裴晓敏,郭红宇,戴建平.胸部CT中肺实质的自动分割及粘连肿瘤检测[J].哈尔滨工程大学学报,2010,31(5):679-682. 被引量:3
  • 10袁克虹,向兰茜.用于计算机辅助诊断的肺实质自动分割方法[J].清华大学学报(自然科学版),2011,51(1):90-95. 被引量:13

共引文献11

同被引文献44

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部