期刊文献+

基于RS-SVR的企业信用评分模型 被引量:3

Enterprise credit scoring model based on RS-SVR
在线阅读 下载PDF
导出
摘要 针对运用信用评分模型提升银行决策能力进行了研究。将支持向量回归模型应用于企业信用评分问题,并提出基于随机子集的支持向量回归集成模型。首先使用随机子集抽样模型获得大量训练数据集,然后使用不同的训练集子集获得差异化支持向量回归模型,最后使用简单平均方法整合不同模型的预测结果。基于企业信用评分数据的实验结果证明了支持向量回归模型的有效性。 This paper researched on using credit scoring models to improve banks' decision-making capacity. It applied sup- port vector regression model to the enterprise credit scoring, and then, it put forward a support vector regression integration model which based on random subset. Firstly, it used random subset sampling model to get enough different training data. Secondly, it employed different training subsets to get various support vector regression models. Finally, it integrated the pre- dicted results of different models by using the simple average method. In conclusion, the result of the experiment based on en- terprise credit scoring data proves the effectiveness of the model.
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3378-3382,共5页 Application Research of Computers
基金 上海市科学技术委员会科研计划资助项目(14511107202 15511107302) 国家自然科学基金资助项目(71101084 71301095)
关键词 信用评分 随机子集 支持向量回归 credit scoring random subset support vector regression(SVR)
  • 相关文献

参考文献26

  • 1Thomas L C, Edelman D B, Crook J N. Credit scoring and its appli- cations [M]. 2002.
  • 2Lee T S, Chiu C C, Lu Chijie, et al. Credit scoring using the hybrid neural discriminant technique [ J ]. Expert Systems with Applica- tions, 2002, 23(3): 245-254.
  • 3Ong C S, Huang J J, Tzeng G H. Building credit scoring models using genetic programming [ J ]. Expert Systems with Applica- tions, 2005, 29(1) : 41-47.
  • 4Hand D J, Henley W E. Statistical classification methods in consumer credit scoring: a review[ J]. Journal of the Royal Statistical Socie- ty: Series A (Statistics in Society), 1997, 160(3) : 523-541.
  • 5Hung C, Chen Jinghong. A selective ensemble based on expected probabilities for bankruptcy prediction [ J ]. Expert Systems with Applications, 2009, 35(3): 5297-5303.
  • 6Shin K S, Han I. A case-based approach using inductive indexing for corporate bond rating [ J]. Decision Support Systems, 2001, 32 (1) : 41-52.
  • 7Vincenzo Pacelli,Michele Azzollini.An Artificial Neural Network Approach for Credit Risk Management[J].Journal of Intelligent Learning Systems and Applications,2011,3(2):103-112. 被引量:7
  • 8Baesens B, Van Gestel T, Viaene S. Benehmarking state-of-the-art classification algorithms for credit scoring [J]. Journal of the Ope- rational Research Society, 2003, 54(6) : 627-635.
  • 9Schebeseh K B, Stecking R. Support vector machines for classifying and describing credit applicants: detecting typical and critical regions [J]. Journal of the Operational Research Society, 2005, 56 (9) : 1082-1088.
  • 10Huang C L, Chen Muchen, Wang C J. Credit scoring with a data mining approach based on support vector machines [ J ]. Expert Sys- tems with Applications, 2007, 33(4): 847-856.

二级参考文献96

共引文献147

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部