期刊文献+

基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩 被引量:16

Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor
在线阅读 下载PDF
导出
摘要 针对基于预测的高光谱图像无损压缩算法压缩比低的问题,该文将聚类算法与高光谱图像预测压缩算法相结合,提出一种基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩算法。首先,对高光谱图像按光谱矢量进行K-均值聚类以提升同类光谱矢量间的相似度。然后,对每一聚类群分别使用传统递归最小二乘法进行预测,消除高光谱图像的空间冗余和谱间冗余。最后,对预测误差图像进行算术编码,完成高光谱图像压缩过程。对AVIRIS 2006高光谱数据进行仿真实验,所提算法对16位校正图像、16位未校正图像和12位未校正图像分别取得了4.63倍,2.82倍和4.77倍的压缩比,优于同类型已报道的各种算法。 To improve the compression ratio of lossless compression scheme based on prediction, a lossless compression scheme for hyperspectral images using K-means Clustering method and Conventional Recursive Least-Squares (C-CRLS) predictor is presented in this paper. The proposed scheme first clusters the spectral data into clusters according to their spectra using the famous K-means clustering method. Then, the proposed scheme calculates the preliminary estimates to form the input vector of the conventional recursive least-squares predictor. Finally, after prediction, the prediction residuals are sent to the arithmetic coder. Experiments on the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 2006 hyperspectral images show that the proposed scheme yields an average compression ratio of 4.63, 2.82, and 4.77 on the 16-bit calibrated images, the 16-bit uncalibrated images, and the 12-bit uncalibrated images, respectively. Experimental results demonstrate that the proposed scheme outperforms other current state-of-the-art schemes for hyperspectral images that have been previously reported.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2709-2714,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(41101419)
关键词 高光谱图像 图像压缩 递归最小二乘法 聚类 Hyperspectral images Image compression Recursive least-squares Clustering
  • 相关文献

参考文献1

二级参考文献10

  • 1Qian Shen-En.Fast vector quantization algorithms based on nearest partition set search. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society . 2006
  • 2Yi ChenN.M. Nasrabadi,T.D. Tran.Sparse representation for target detection in hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing . 2011
  • 3Penna, Barbara,Tillo, Tammam,Magli, Enrico,Olmo, Gabriella.Hyperspectral image compression employing a model of anomalous pixels. IEEE Geoscience and Remote Sensing Letters . 2007
  • 4Manolakis, Dimitris,Shaw, Gary.Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine . 2002
  • 5M. W. Marcellin,P. Sriram,Kai-Loong Tong.Transform coding of monochrome and color images using trellis coded quantization. IEEE Transactions on Circuits and Systems for Video Technology . 1993
  • 6Mielikainen, Jarno,Toivanen, Pekka.Clustered DPCM for the lossless compression of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing . 2003
  • 7Azam Karami,Mehran Yazdi,Gregoire Mercier.Compression of Hyperspectral Images Using Discerete Wavelet Transform and Tucker Decomposition. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING . 2012
  • 8Ian Blanes,Joan Serra-Sagrista.Cost and Scalability Improvements to the Karhunen-Loeve Transform for Remote-Sensing Image Coding. IEEE Transactions on Geoscience and Remote Sensing . 2010
  • 9Adjeroh, Donald A.,Sawant, Supriya D.Error-resilient transmission for 3D DCT coded video. IEEE Transactions on Broadcasting . 2009
  • 10Qian, Shen-En,Bergeron, Martin,Cunningham, Ian,Gagnon, Luc,Hollinger, Allan.Near lossless data compression onboard a hyperspectral satellite. IEEE Transactions on Aerospace and Electronic Systems . 2006

共引文献3

同被引文献129

引证文献16

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部