期刊文献+

傅里叶叠层显微成像技术:理论、发展和应用 被引量:32

Fourier Ptychographic Microscopy:Theory,Advances,and Applications
原文传递
导出
摘要 高分辨率是光学显微技术发展至今不断追求的目标之一。然而随着当前显微镜系统功能与性能的不断革新,高分辨率与大视场难以同时兼顾的问题日益突出,这个问题极大地限制了其在许多领域的应用。傅里叶叠层显微成像技术(FPM)是近年来发展出的一种新型计算成像技术,其能通过同时恢复强度和相位分布来提供宽域高分辨率的成像能力。FPM虽然是在2013年才被提出,但是由于其融合了大视场、高分辨率、定量相位成像等诸多优点,近年来已经在光学显微、生物医学、生命科学等领域获得了大量研究和广泛关注。从基本原理、实验系统与成像模式、系统与算法的改进方法等几个方面对FPM的研究现状、应用领域和最新进展进行了综述,并讨论了现存的一些关键问题以及今后可能的研究方向。 High resolution is one of the goals that optical microscopy techniques always pursue till now. Despite the current innovations of microscopy systems'functionality and performance, the confliction between high resolution and large field-of-view has become increasingly prominent, limiting its applications greatly in many areas. As a new-type computational imaging method, Fourier ptychographic microscopy (FPM) has been introduced in recent years, which provides a wide-field high-resolution imaging capability by recovering the intensity and phase distributions simultaneously. Although FPM has just been proposed in 2013, it has received extensive attention and researches in the field of optical microscopy, biomedicine, and life sciences because of its large field of view, high resolution, quantitative phase imaging and many other advantages. A review is given to introduce the research status, applications and some recent advances in FPM from its basic principles, experimental systems and imaging modalities, advanced recovery method of system and algorithm. The changeling problems as well as future research directions are also discussed.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第10期89-107,共19页 Acta Optica Sinica
基金 国家自然科学基金(11574152 61505081) 江苏省"六大高峰"人才项目(2015-DZXX-009) 江苏省"333工程"科研项目(BRA2015294) 江苏省光谱成像智能感知重点实验室开放基金(3092014012200417) 南京理工大学自主科研基金(3092014012200417) 南京理工大学"紫金之星"(第一类)项目
关键词 成像系统 计算成像 显微成像 相位恢复 图像重建技术 imaging systems computational imaging microscopy phase retrieval image reconstruction techniques
  • 相关文献

参考文献6

二级参考文献36

  • 1王潇,毛珩,赵达尊.基于光强传播方程的相位恢复[J].光学学报,2007,27(12):2117-2122. 被引量:15
  • 2G Zheng, R Horstmeyer, C Yang. Wide-field, high-resolution Fourier ptychographic microscopy[./]. Nature Photonics, 2013, 7(9) 739-745.
  • 3X Ou, R Horstmeyer, C Yang. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Opt Lett, 2013, 38(22): 4845-4848.
  • 4S Dong, R Shiradkar, P Nanda. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6): 1757-1767.
  • 5G Zheng. Fourier ptychographic imaging[J]. IEEE Photonics Journal, 2014, 6(4).
  • 6G Zheng, X Ou, R Horstmeyer, et al.. Fourier ptychographic microscopy: A gigapixel superscope for biomedicine[J]. Optics and Photonics News, 2014, 25(4): 26-33.
  • 7J R Fienup. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3(1): 27-29.
  • 8J R Fienup. Phase retrieval algorithms: A comparison[J]. Appl Opt, 1982, 21(15): 2758-2769.
  • 9L Waller, S S Kou, C J R Sheppard, et al.. Phase from chromatic aberrations[J]. Opt Express, 2010, 18(22): 22817-22825.
  • 10C H Lu, C Barsi, M O Williams, et al.. Phase retrieval using nonlinear diversity[J] Appl Opt, 2013, 52(10): D92-D96.

共引文献67

同被引文献224

引证文献32

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部