期刊文献+

基于PSO的塔式起重机模糊神经网络滑模防摆控制 被引量:7

Fuzzy Neural Network Sliding Mode Anti-swing Control for Tower Crane Based on PSO
在线阅读 下载PDF
导出
摘要 针对塔式起重机运行中重物摆动造成的工作效率降低、存在安全隐患等问题,建立塔式起重机的动力学模型,设计基于PSO的模糊神经网络滑模控制器,用于塔式起重机的定位、防摆控制。用模糊神经网络辨识塔式起重机系统模型的不确定项,并用PSO算法优化滑模控制器的参数。该方法降低了滑模控制系统的抖振,提高了控制系统的性能。仿真结果表明该方法的有效性和可行性。 The efficiency of tower crane will decrease, moreover hidden safety problems existing because of swing of the heavy load in the operation of the tower crane. The dynamics model of the tower crane was analyzed, and a kind of fuzzy neural network slid- ing mode controller based on PSO was designed using for tower crane positioning and anti-swing control. The fuzzy neural network was used for identification of tower crane model uncertainties, and PSO algorithm was used to optimize parameters of the sliding mode con- troller. The method reduces the chattering of sliding mode control system, improves the performance of the control system. The simula- tion results show the effectiveness and feasibility of the method.
出处 《机床与液压》 北大核心 2016年第22期155-159,共5页 Machine Tool & Hydraulics
基金 江苏省电子信息工程技术研究开发中心开放基金项目(KF20140203)
关键词 塔式起重机 滑模控制 粒子群算法(PSO) 模糊神经网络 Tower crane Sliding mode control Particle swarm optimization Fuzzy neural network
  • 相关文献

参考文献4

二级参考文献98

  • 1王晓军,邵惠鹤.基于模糊的桥式起重机的定位和防摆控制研究[J].系统仿真学报,2005,17(4):936-939. 被引量:79
  • 2熊伟丽,徐保国,周其明.基于改进粒子群算法的PID参数优化方法研究[J].计算机工程,2005,31(24):41-43. 被引量:21
  • 3王清,马广富,弥曼.一种基于遗传算法的神经网络控制方法研究[J].系统仿真学报,2006,18(4):1070-1072. 被引量:20
  • 4王克琦.桥式起重机的定位和防摆控制研究[J].系统仿真学报,2007,19(8):1799-1802. 被引量:19
  • 5Kambiz F, Mahdi J K. Genetic algorithms based fuzzy sliding mode control with application to building structures[J]. ICAISC 2004, LNAI3070, 960-965.
  • 6Lin F J, Chou W D. An induction motor servo drive using sliding-mode controller with genetic algorithm[J]. Electronic Power Systems Research, 2003, 64: 93-108.
  • 7Mahdi J K, Hossein R. Fuzzy sliding mode control of robotic manipulators based on genetic algorithms[J]. MICAI, 2004, LNAI2972: 892-900.
  • 8Lii G R, Chiang C L, Su C T, et al. An induction motor position controller optimally designed with fuzzy phase-plane control and genetic algorithms[J]. Electronic Power Systems Research, 2004, 68: 103-112.
  • 9Ghoshal S P. Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control[J]. Electronic Power Systems Research, 2004, 72: 203-212.
  • 10KOLMANOVSKY I, MCCLAMROCH N. Developments in nonholonomic control problems [ J ]. IEEE Control Systems Magazine, 1995, 15(6) : 20-36.

共引文献76

同被引文献61

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部