期刊文献+

混合关键任务可靠调度方法与调度性分析 被引量:2

Novel mixed-criticality reliability scheduling strategy and schedulability test
在线阅读 下载PDF
导出
摘要 为了解决云计算环境下混合关键性任务的可靠调度问题,提出了一种基于主副版本两阶段的混合关键任务可靠调度方法.算法首先对需要调度的混合关键性任务进行优先级划分,按照调度截止期最短的原则将主版本任务调度到目标虚拟机上,对副版本任务按照复制成本最低的原则使用重叠方法进行调度;再对调度到不同虚拟机上的主副版本任务进行可调度分析,对于不能满足分析的任务启动更高关键性等级进行处理.实验结果表明了混合关键任务可靠调度方法具有较高的可靠性和负载平衡能力. In order to solve the reliable scientific workflow scheduling problem for the Mixed-Criticality task in cloud computing, we proposed the Mixed-Criticality reliability scheduling strategy (MCRSS) based on Primary/Backup. First, the priority of the primary Mixed-Criticality task is determined and the task is scheduled for the virtual processor with the deadline being the shortest, the backup is the virtual processor with the cost of copy being the lowest. Second, the schedulability test of the primary and backup task are proposed. If tee task does not satisfy the sehedulability test, then the task wi.tl, change to high cri.ticality. Experimental results show that the MCRSS algorithm is of high reliability and load balancing capabilities.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第6期158-163,共6页 Journal of Xidian University
基金 中央高校基本科研业务费专项资金资助项目(2572014EB05-4) 黑龙江省自然科学基金重点资助项目(ZD201403) 林业公益性行业科研专项经费资助项目(201504307)
关键词 云计算 混合关键性任务 可靠调度 主副版本 cloud computing mix-criticality task reliable scheduling primary/backup
  • 相关文献

参考文献3

二级参考文献109

  • 1BARHAM P. DRAGOVIC B, FRASER K, et al. Xen and the art ofvirtualization[J]. ACM SIGOPS Operating Systems Review, 2003,37(5): 164-177.
  • 2Above the Clouds: A Berkeley View of Cloud Computing[R]. USA:University of California, Berkeley, 2009.
  • 3QIN X, JIANG H. A novel fault-tolerant scheduling algorithm forprecedence constrained tasks in real-time heterogeneous systems [J],Parallel Computing, 2006, 32(5): 331-356.
  • 4JERRREY D. Designs, Lessons and Advice From Building LargeDistributed Systems[R]. Keynote from LADIS, 2009.
  • 5OKORAFOR E. A fault-tolerant high performance cloud strategy forscientific computing[A]. Parallel and Distributed Processing Work-shops and Phd Forum (IPDPSW)[C]. 2011. 1525-1532.
  • 6JEFFREY D, SANJAY G. MapReduce: simplified data processing onlarge clusters[J]. Communications of the ACM, 2008,51(1): 107-113.
  • 7MANIMARAN G, MURTHY C S R. A fault-tolerant dynamic schedulingalgorithm for multiprocessor real-time systems and its analysis [J]. IEEETransactions on Parallel and Distributed Systems, 1998,9(11): 1137-1152.
  • 8ZHENG Q. Improving MapReduce fault tolerance in the cloud[A].Parallel and Distributed Processing Workshops and Phd Forum(IPDPSW)[C]. 2010. 1-6.
  • 9ANTONY S, ANTONY S,BEEGOM A,et al. Task scheduling algo-rithm with fault tolerance for cloud[A]. International Conference onComputing Sciences[C]. 2012. 180-182.
  • 10PLANKENSTEINER K,PRODAN .R. Meeting soft deadlines inscientific workflows using resubmission impact[J], IEEE Transactionson Parallel and Distributed Systems, 2012,23(5): 890-901.

共引文献72

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部