期刊文献+

基于Ga-BP神经网络的色纺纱配色 被引量:7

Color matching in colored spun yarn based on Ga-BP neural network
在线阅读 下载PDF
导出
摘要 针对传统配色方法及配色算法存在不足之处,利用BP神经网络对色纺纱进行配方预测,并用遗传算法对其进行改进.结果表明:将遗传算法引入到BP神经网络,可优化BP神经网络配色模型;测试样本包含在训练样本中时,预测配方精度非常高,配方绝对误差均值几乎为0;而测试样本不包含在训练样本中时,预测配方精度较低,配方绝对误差均值为0.033,初次打样色差均值为1.69 CMC(2∶1),大于1 CMC(2∶1). For the deficiencies of traditional color matching and color matching algorithm, BP neural network is used to pre-dict the formula of the colored spun yarn, and the genetic algorithm is introduced to improve the BP neural net-work. The results show that : BP neural network can be optimized when the genetic algorithm is introduced into it , but when the test sample is contained in the training sample data, the color matching accuracy of this Ga-BP neural network is very high and the mean formula absolute error is almost 0 , while when the test sample is not in-cluded in the training samples, the color matching accuracy is lower and the mean formula absolute error is 0.033 , the mean color difference of the first smaple is 1.69 CMC(2 : 1 ) , and more than 1 CMC(2 : 1).
出处 《天津工业大学学报》 CAS 北大核心 2016年第6期27-31,共5页 Journal of Tiangong University
基金 国家重点研发计划专题(2016YFB0302801-03)
关键词 色纺纱 BP神经网络 遗传算法 配色 colored spun yarn BP neural network genetic algorithm color matching
  • 相关文献

参考文献8

二级参考文献51

共引文献91

同被引文献69

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部