期刊文献+

改进的基于全变分最小去噪的路径无关相位解包算法 被引量:3

Improved Path-Independent Phase Unwrapping Algorithm Based on Total-Variation Minimum Denoising
原文传递
导出
摘要 相位解包算法主要分为路径相关算法和路径无关算法,广泛应用于光学测量领域。针对残差相位中含有噪声的问题,提出了改进的基于全变分最小去噪的路径无关相位解包算法。首先在包裹相位图中求出相位梯度,然后用全变分最小方法对相位梯度图去噪,通过积分获得近似的相位解包图,并进一步去除了残差相位图中的噪声,经多次迭代获得最终的相位解包图。通过仿真和实验对比了去除噪声前后解包相位与原始相位的误差。结果表明,残差相位去噪后得到解包相位的峰谷值、均方根值误差均小于未去噪的情况。 The phase unwrapping algorithms are divided into the path-dependent type and the path-independent type, and can be widely used in the field of optical measurements. An improved path-independent phase unwrapping algorithm based on total-variation minimum denoising is proposed to wipe off the remained noise in the residual phase. Firstly, the phase gradient is determined from the wrapped phase map and subsequently denoised by the total-variation minimization based method. Thus, an approximate phase unwrapped map can be obtained by integrating the denoised phase gradient, and the residual phase map is denoised. The final phase unwrapped map is subsequently determined by adding the first few modes of the unwrapped phase. Error values of unwrapped phase before and after denoising are compared with the original phase by simulations and experiments. The results show that the values of peak-valley and root-mean-square of unwrapped phase with residual phase denoised are lower than those of unwrapped phase with residual phase not denoised.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第12期133-140,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(6140030594)
关键词 测量 相位测量 相位解包 路径无关解包 相位梯度 全变分最小去噪 measurement phase measurement phase unwrapping path-independent unwrapping phase gradient total-variation minimum denoising
  • 相关文献

参考文献5

二级参考文献53

  • 1朱日宏,陈进榜,王青,陈磊.移相干涉术的一种新算法:重叠四步平均法[J].光学学报,1994,14(12):1288-1293. 被引量:36
  • 2王新,贾书海.数字散斑相位图去包裹新算法[J].光学学报,2006,26(5):663-667. 被引量:5
  • 3刘国林,独知行,薛怀平,郝晓光.卡尔曼滤波在InSAR噪声消除与相位解缠中的应用[J].大地测量与地球动力学,2006,26(2):66-69. 被引量:23
  • 4Judge T. R, Bryanston-Cross P. J. A review of phase unwrapping techniques in fringe analysis [J]. Opticsand Laser in Engineering, 1994, 21(4) : 199-239.
  • 5Ghiglia D. C, Pritt M. D. Two Dimensional Phase Unwrapping Theory, Algorithms, and Software[M]. John Wiley & Sons . Inc, 1998.
  • 6Bone D. J. Fourier fringe analysis:the two dimensional phase unwrapping problem [J], Appl. Opt. , 1991, 30(25):3627-3632.
  • 7Itoh K. Analysis of the phase unwrapping algorithm [J]. Appl. Opt., 1982, 21(14):2470-2470.
  • 8Criminisi A, Perez P, Toyama K. Object removal by exemplar based inpainting [C]. Proceedings of the 2003 IEEE Computer Socity Conference on Computer Vision and Pattern Recognition, Madison WI, 2003.
  • 9Su X, Chen W. Reliability-guided phase unwrapping algorithm:a review[J]. Optics and Lasers in Engineering, 2004, 49'(3):245 -261.
  • 10Mark D.Pritt.Comparison of path-following and least-squaresphase unwrapping algorithm[C].IEEE Geoscience and RemoteSensing,1997,2:872-874.

共引文献61

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部