期刊文献+

基于稀疏多尺度分割和级联形变模型的行人检测算法 被引量:2

A Pedestrian Detection Algorithm Based on Sparse Multi-scale Image Segmentation and Cascade Deformable Part Model
原文传递
导出
摘要 行人检测是视频大数据中提取信息的关键技术之一,是视频大数据挖掘的关键环节。提出了一种基于稀疏多尺度分割和级联形变模型的行人检测算法。首先设计基于图像纹理的稀疏多尺度分割算法提取潜在行人区域,完成初级多尺度检测;同时缩小检测范围,剔除大量背景区域;再基于级联形变模型在候选特征区域进行精细检测,最终实现由粗到细的快速行人检测。在TUD-Crossing和TUD-Pedestrian等公开数据集上对算法进行了测试。实验结果表明,本文算法降低了虚警率,提升了检测速度。 Pedestrian detection is one of the key technologies in the large video data to extract information,which is an important link in the process of large video data mining.This is a difficult problem because pedestrian can vary from place to place and time to time.The changes in illumination and viewpoint,variability in shape,non-rigid deformations all can cause variations.In order to achieve a fast and robust pedestrian detection,this paper proposes a pedestrian detection algorithm based on sparse multi-scale image segmentation and cascade deformable part model.Through the sparse multiscale image segmentation algorithm based on texture,lots of background region is eliminated and the interesting area is extracted.In the segmented interesting area,ageneral method is used for building cascade classifiers from part-based deformable models such as pictorial structures.Pictorial structures describe objects by a collection of parts included in a deformable configuration.Each part stands for local appearance properties of a part of the body while the deformable configuration is presented by spring-like connections between parts.The model focuses primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection.A discriminative procedure called Latent SVM is used to train these models.Lots of experiments are conducted on public data sets TUD-Crossing and TUD-Pedestrian.Experimental results show that little detection accuracy is increased by our algorithm,and the detection speed is improved obviously.
作者 吕瑞 邵振峰
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第11期1544-1549,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(61172174) 国家重大设备专项基金(2012YQ16018505) 国家科技支撑计划(2013BAH42F03)~~
关键词 行人检测 稀疏多尺度分割 级联形变模型 pedestrian detection sparse multi-scale image segmentation cascade deformable part model
  • 相关文献

参考文献2

二级参考文献18

  • 1佘江峰,冯学智,都金康.时空数据模型的研究进展评述[J].南京大学学报(自然科学版),2005,41(3):259-267. 被引量:29
  • 2李德仁.地球空间信息学及在陆地科学中的应用[J].自然杂志,2005,27(6):316-322. 被引量:24
  • 3姜晓轶,周云轩.从空间到时间——时空数据模型研究[J].吉林大学学报(地球科学版),2006,36(3):480-485. 被引量:32
  • 4宋孝斌.中国城市交通可持续发展水平的综合评价与对比分析[J].辽宁工程技术大学学报(社会科学版),2007,9(2):148-150. 被引量:3
  • 5Fujiyoshi L A J, Patil R S. Moving target classification and tracking from real-time video. Processing of IEEE Workshop on Applieations of Computer Vision. 1998:8--14
  • 6Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance. The 9th ICCV ,2003 ;1:734--741
  • 7Dalal N, Triggs B. Histograms of oriented gradients for human detection. CVPR ,2005
  • 8Zhu Qiang,Avidan S,Yeh M C. Fast human detection using a cascade of histograms of oriented gradients. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York :2006 ;2 :1491--1498
  • 9Platt J. Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods-Support Vector Learning, MIT Press, to appear, 1998.
  • 10Keerthi S S, Shevade S K, Bhattacharyya C. Improvements to platt's SMO algorithm for SVM classifier design. Neural Computation,2001

共引文献88

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部