期刊文献+

利用紫外光离子源高场不对称波形离子迁移谱快速、现场检测水中氨的含量 被引量:3

Direct and Rapid Determination of Ammonia in Water Samples Using Ultraviolet Photoionization High Field-Asymmetric Waveform Ion Mobility Spectrometry
在线阅读 下载PDF
导出
摘要 氨是水体主要的污染物之一,其含量是水质评估的重要参数。本研究采用真空紫外光离子源-高场不对称波形离子迁移谱(Ultraviolet photoionization high field asymmetric waveform ion mobility spectrometry,UVFAIMS)技术,发展一种的水中氨含量的现场快速检测方法。通过对比标准氨样品和水中微量氨UV-FAIMS谱图峰的特征补偿电压(Compensation voltage,CV)值,确定了水中HN+4的特征离子峰位置;研究了不同分离电压(Dispersion voltages,DV)下HN_4^+谱图峰位置的关系,获得了HN_4^+的特征识别系数α_2和α_4分别为2.21×10^(-5)Td^(-2)和-1.45323×10^(-9)Td^(-4);通过不同浓度样品的信号响应,研究了UV-FAIMS对水中氨的检出限,在信噪比为3的情况下达到了9.2μg/L。本研究为水中氨现场检测提供了一种快速、无需前处理的技术手段。 A novel on-site rapid detection method for ammonia detection in water was developed by using ultraviolet photoionization high field-asymmetric waveform ion mobility spectrometry(UV-FAIMS). The position of ammonia characteristic ion peak was acquired by the comparison between the characteristic compensation voltage(CV)in standard ammonia sample and trace amount ammonia in water. The relation between the positions of ammonia characteristic ion peaks under different dispersion voltages(DV) was studied. The values of α2,α4were 2. 21 × 10^-5Td^-2and-1. 45323 × 10^-9Td^-4,respectively. The different concentrations of ammonia in water was measured with a limit of detection(LOD)of 9. 2 μg / L(S / N = 3).This study provided a rapid,non-pretreatment means for the detection of ammonia in water matrices.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2016年第11期1679-1685,共7页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.61374016) 中国科学院青年创新促进会(No.2013213) 中科院科技服务网络计划项目(No.KFJ-EWSTS-083)资助项目~~
关键词 高场不对称波形离子迁移谱 水污染 现场检测 Ammonia Ultraviolet photoionization high field-asymmetric waveform ion mobility spectrometry Water pollutants On-site detection
  • 相关文献

参考文献4

二级参考文献57

  • 1张东风,孔德义,梅涛,陶永春.离子迁移谱仪微型化的现状与进展[J].仪器仪表学报,2006,27(2):199-204. 被引量:22
  • 2时迎国,劭士勇,李安林,姚琏,王宾,李芳,王俊德,李海洋.迁移管的电场强度对真空紫外电离-离子迁移谱仪性能的影响[J].分析化学,2006,34(9):1353-1356. 被引量:13
  • 3Buryakov I A,Krylov E V,Nazarov E G,Rasulev U K.Int.J.Mass Spectrom.Ion Processes,1993,128(3):143-148.
  • 4Kolakowski B M,Mester Z.Analyst,2007,132(9):842-864.
  • 5Hatsis P,Kapron J T.Rapid Commun.Mass Spectrom.,2008,22(5):735-738.
  • 6Ells B,Barnett D A,Purves R W,Guevremont R.J.Environ.Monit.,2000,2(5):393-397.
  • 7Miller R A,Nazarov E G,Eiceman G A,Thomas K A.Sensors and Actuators.A,2001,91(3):301-312.
  • 8Purves R W,Guevremont R,Day S,Pipich C W,Matyjaszczyk M S.Rev.Sci.Instrum.,1998,69(12):4094-4105.
  • 9Krylov E V.Int.J.Mass Spectrom.,2003,225(1):39-51.
  • 10YANG Jin-Ji(杨津基).Gas Discharge(气体放电).Beijing(北京):Science Press(科学出版社),1983:68-70.

共引文献39

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部