摘要
目的:建立液相色谱-串联质谱法(LC-MS/MS法)测定人血浆中氯胺酮及其代谢物去甲基氯胺酮对映异构体浓度,并用于氯胺酮和右氯胺酮临床药动学研究。方法:血浆经固相萃取后,采用PLC-MS/MS测定。色谱柱为酸性糖蛋白结合硅胶柱(100 mm×4mm,5μm),流动相为异丙醇-10 mmol·L^(-1)醋酸胺溶液(氨水调pH至7.6~7.7)(6:94),流速0.5mL·min^(-1),柱温28℃;质谱采用电喷雾离子化(ESI)及多重反应监测(MRM)模式;选择检测离子反应对为m/z 238→m/z207(R-/S-氯胺酮),m/z 224→m/z 207(R-/S-去甲基氯胺酮),m/z 291→m/z 230(内标甲氧氨苄嘧啶)。结果:人血浆中氯胺酮对映异构体的线性范围为5~1000ng·mL^(-1),最低定量限为5ng·mL^(-1);代谢物去甲基氯胺酮对映异构体的线性范围为2.5~500 ng·mL^(-1),最低定量限为2.5 ng·mL^(-1)。本方法专属性良好,氯胺酮对映异构体批内批间精密度均小于5%,去甲基氯胺酮对映异构体的批内批间精密度均小于7%。此检测方法应用于全麻腹腔镜手术受试者静脉注射盐酸氯胺酮注射液或盐酸右氯胺酮后的药代动力学研究中。21例患者单次静脉注射消旋体氯胺酮后,R-氯胺酮和S-氯胺酮半衰期分别为(4.06±1.75)h、(3.33±2.23)h;停药后即刻浓度C_0分别为(3 427±2 866)ng·mL^(-1)、(3331±2797)ng·mL^(-1);24h曲线下面积AUC_(0~24h)分别为(407±91)h·ng·mL^(-1)、(361±87)h·ng·mL^(-1)。代谢物R-N-去甲基氯胺酮和S-N-去甲基氯胺酮半衰期分别为(8.63±2.57)h、(8.73±2.93)h;达峰浓度C_(max)分别为(100±22)ng·mL^(-1)、(91±20)ng·mL^(-1);24h曲线下面积AUC_(0~24h)分别为(557±211)h·ng·mL^(-1)、(515±167)h·ng·mL^(-1)。结论:本方法准确,专属性强,灵敏度高,可满足实际临床研究的需要。
Objective: To develop a liquid chromatography-tandem mass spectrometry method for quantification of ketamine and to study its metabolite norketamine enantiomers in human plasma. Method: Ketamine and norketamine enantiomers were extracted t'rom human serum ( 0.2 mL ) via solid phase extraction. Trimethoprim served as the internal standard. The analyte and internal standard were separated on a Chiralpak AGP column ( 100 mm × 4 mm, 5 μ m ) using isocratic elution with mobile phases of 2-propanol, 10 mmol·L-1 ammonium acetate solution ( 6 : 94, v/v ). The flow rate was 0.5 mL·min-1, and the column temperature was 28℃. Ketamine and norketamine enantiomers were. quantified using a triple quadrupole mass spectrometer operated in multiple-reaction-monitoring mode using positive electrospray ionisation. The mass transitions monitored for quantitation were m/z 238-m/z 207 for ketamine, m/z 224 m/z 207 for norketamine, and rn/z 291→ m/z 230 for trimethoprim. Results: The linear range of ketamine enantiomers in human plasma was 5 - 1 000 ng·mL-1, and the lowest limit of quantification was 5 ng ·mL-1. The linear range of metabolites of demethyl ketamine enantiomers was 25-500 ng·mL-1, and the lowest limit of quantitation was 2.5 ng·mL-1. The method was validated with acceptable inter- and intra-assay precision, accuracy and stability which is suitable for clinical trial research. After 21 patients were administrated with racemic ketamine, t1/2 of R-ketamine and S-ketamine were ( 4.06± 1.75 ) h and ( 3.33± 2.23 ) h, respectively; Co of R-ketamine and S-ketamine were ( 3 427± 2 866 ) ng·mL-1 and ( 3 331±2 797 ) ng·mL-1, respectively; AU C0-24 h of R-ketamine and S-ketamine were ( 407 + 91 ) h ·ng·mL-1 and ( 361 ±87 ) h ·ng·mL-1, respectively, t1/2 of the metabolites, R-norketamine and S-norketamine, were ( 8.63±2.57 ) h and ( 8.73 ±2.93 ) h, respectively; Cma of R-norketamine and S-norketamine were ( 100± 22)ng·mL-1 and ( 91± 20 )ng·mL-1, respectively; AUC0-24h of R-norketamine and S-norketamine were ( 557 ± 211)ng·mL-1 and ( 515± 167 ) h·ng·mL-1, respectively. Conclusion: The developed method is specific, accurate and sensitive, which can meet the needs of pharmacokinetic study of ketamine hydrochloride injection and S-ketamine hydrochloride injection.
出处
《药物分析杂志》
CAS
CSCD
北大核心
2017年第1期97-104,共8页
Chinese Journal of Pharmaceutical Analysis
基金
“重大新药创制”科技重大专项-《心血管药物临床研究技术平台建设》(2012ZX09304-008-001)