期刊文献+

精氨酸缺陷型菌株发酵生产反式-4-羟脯氨酸 被引量:2

Fermentative production of trans-4-hydroxyproline with arginine-deficient strain
在线阅读 下载PDF
导出
摘要 为了获得高产反式-4-羟脯氨酸的菌株,基于大肠杆菌的代谢网络模型的指导,以大肠杆菌E.coli BL21(DE3)Δput A为出发菌株,通过基因敲除技术成功敲除arg B基因,阻断L-脯氨酸合成的前体物L-谷氨酸的分支代谢途径,增加L-脯氨酸合成的代谢流,构建了精氨酸缺陷型菌株E.coli BL21(DE3)Δput AΔarg B。同时转入表达质粒p UC19-pro B2A-Ptrp2-hyp,该质粒含有突变基因pro B2,该突变基因所编码的谷氨酸激酶受L-脯氨酸的反馈抑制作用显著降低。摇瓶发酵结果表明,在外源添加600 mg/L L-精氨酸时,该重组菌株产反式-4-羟脯氨酸的量达到312.67 mg/L,较菌株E.coli BL21(DE3)Δput A/p UC19-pro B2A-Ptrp2-hyp提高了25.29%。 In order to obtain high-yield strains of trans-4-hydroxyproline, based on the guidance of E. coli meta- bolic network model and using E. eoli BL21 (DE3)AputA as the original strain, gene argB was knocked out success- fully, which blocked metabolic pathways branch of L-glutamic acid, L-proline synthetic precursors and increased syn- thesis of L-proline metabolic flux. The constructed arginine-deficient strain E. eoli BL21 ( DE3 ) AputAAargB was transformed with the expression plasmid pUC19-proB2A-Ptrp2-hyp. The expression plasmid contains the mutant gene proB2 encoding glutamate kinase that significantly reduced L-proline feedback inhibition. Fermentation results indica- ted thatthe trans-4-hydroxyproline production of recombinant strain reached 312.67 mg/L exogenous arginine, which increased by 25 Ptrp2-hyp. 29% compared with E. eoli BL21 (DE3 er addition of 600 mg/L AputA/ pUC19-proB2A-ptrp2-hyp.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2017年第1期24-30,共7页 Food and Fermentation Industries
基金 国家自然科学基金(30970058) 江苏省自然科学基金(BK2012554) 工业生物技术教育部重点实验室(江南大学)开放课题基金(KLIB-ZR200801)
关键词 大肠杆菌1 反式-4-羟脯氨酸2 基因敲除3 脯氨酸4 Escherichia coli trans-4-hydroxyproline knockout proline
  • 相关文献

参考文献3

二级参考文献23

  • 1龚建华,丁久元,黄和容,陈琦.L-精氨酸发酵动力学特性的分析研究[J].生物工程学报,1993,9(1):8-15. 被引量:4
  • 2许正宏,窦文芳,王霞,陶文沂.氮源及其添加模式对钝齿棒杆菌JDN28-75合成L-精氨酸的影响[J].应用与环境生物学报,2006,12(3):381-385. 被引量:11
  • 3Ram6n-Maiques S, Marina A, Gil-Ortiz F, et al. Struc- ture of Acetyl glutamate Kinase, a Key Enzyme for Argi- nine Biosynthesis and a Prototype for the Amino Acid Ki- nase Enzyme Family, during Catalysis [ J ]. Structure, 2002, 10: 329-342.
  • 4Sancho-Vaello E, Fern6ndez-Murga M L, Rubio V. Mechanism of Arginine Regulation of Acetylglutamate Synthase, the First Enzyme of Arginine Synthesis [ J ]. FEBS Letters, 2009, 583: 202-206.
  • 5Tomoki A, Seiji A, Toshihide N. Process for producing L-arginine: US, 334328. 1989-08-07
  • 6Vehary S, Anitchka H. Microorganisms and method for L-arginine: US, 5034319. 2001-10-26
  • 7Takashi Utagawa. Arginine metabolism: enzymology, nutrition, and clinical significance. American Society for Nutritional Sciences, 2004, 134 : 2854-2857
  • 8Hirose Y, Shibai H. Amino acid fermentation. Biotechnol.Bioeng., 1980, 22: 111-125
  • 9GongJianhua(龚建华) DingJiuyuan(丁久元) LuZhiqiang(路志强) ChenQi(陈琦).Studies on the {ermentation of L-arginine[J].微生物学报,1988,28(3):257-264.
  • 10Xiao J, Shi Z, Gao P. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess Biosyst Eng. , 2006, 29 (2) : 109-117

共引文献14

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部