期刊文献+

传感网络中入侵数据查询方法改进研究仿真

In sensor network intrusion data query method to improve simulation research
在线阅读 下载PDF
导出
摘要 针对传感网络中的入侵数据进行查询,为提高网络数据管理性能和可靠性。由于在进行入侵数据查询时,需要设定固定的过滤器阈值,使得对入侵数据的遍历不全面。传统的查询算法主要通过收集各节点入侵数据,进行数据查询,没有设置过滤器阈值,导致查询出现冗余数据,查询精度低。提出分簇算法的传感网络中入侵数据查询的改进方法。在传统算法的基础上将网络划分为不同的簇,筛选出各个簇的簇头节点,由簇头节点将数据汇聚至Sink节点,并设置过滤器阈值对汇聚至Sink节点上的入侵数据进行过滤,最后利用入侵数据间的关联特征遍历和收集全部网络中和查询数据关联性较强的入侵数据,生成最终的查询结果。仿真结果证明,基于分簇的传感网络中入侵数据查询方法抗干扰性较强,同时提高了入侵数据查询的精度和效率。 It can improve management performance and reliability of network data to query intrusion data in sensor network. Fixed threshold of filter is needed to be set during querying. It makes traversal of intrusion data incomplete. Traditional query algorithm queries data through collecting the intrusion data of each node. There is no filter threshold. It leads to redundant data and low precision. This paper proposes a modified query method of intrusion data in sensor network based on clustering algorithm. Firstly, the network is divided into different clusters based on traditional algorithm to screen out node of each cluster head. Then the data are converged to Sink node through cluster head node. The filter threshold is also set to filter intrusion data converged to Sink node. Finally, the relevant feature trav- ersal between intrusion data and collected intrusion data correlated with querying data strongly in entire network is used to generate final querying result. The simulation results show that the modified method has high anti - interference property. It can improve accuracy and efficiency of intrusion data querying.
出处 《计算机仿真》 北大核心 2017年第2期314-317,共4页 Computer Simulation
基金 国家自然基金(61472268) 国家自然基金(61472211)
关键词 传感网络 入侵数据 数据关联 查询 Sensor network Invasion of data Data association Querying
  • 相关文献

参考文献10

二级参考文献83

  • 1郭朝鹏,王智,韩峰,张一川,宋杰.HaoLap:基于Hadoop的海量数据OLAP系统[J].计算机研究与发展,2013,50(S1):378-383. 被引量:5
  • 2牛继来,何泽恒,潘庆和.数据查询模式研究及在PowerBuilder中的实现[J].计算机技术与发展,2006,16(7):61-63. 被引量:3
  • 3HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4周世东.Web数据挖掘在海量数据中的应用研究[J].系统仿真学报,2010-6:55-59.
  • 5苏耿,潘雪梅.一种改进的Apriori算法及应用[J].软件学报,2011,(32):51-54.
  • 6B Rozel, M Viziteu, R Calre, J R Rognon. Towards a Common Model for Studying Critical Infrastructure Interdependencies [ C ]. IEEE Power and Energy Society 2008 General Meeting : Conversion and Delivery of Electrical Energy in the 21 st Century, 2008 : 1 - 6.
  • 7HBase技术介绍[EB/OL].http://www.searchtb.com/2011/01/understanding-hbase.html,2011.
  • 8Raykova M, Vo B, Bellovin SM, Malkin T. Secure ano- nymous database search[C]. In: Sion R, ed. Proc. of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, Co-Located with the 16th ACM Computer and Communications Security Conf., CCS2009. New York: Association for Computing Machinery, 2009. 115-126. [doi: 10.1145/1655008.1655025].
  • 9Weiss A. Computing inclouds [ J ]. ACM Networker, 2007,11 (4) :18-25.
  • 10Raykova M,Vo B, Bellovin S M, et al. Secure anonymous da- tabase search[ C]//Proc of the 2009 ACM workshop on cloud computing security. New York:Association for Computing Ma- chinery ,2009 : 115-126.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部