期刊文献+

独立非同分布二元高斯三角阵最大值的渐近性及相关统计推断 被引量:1

Asymptotics and Statistical Inferences on Independent and Non-identically Distributed Bivariate Gaussian Triangular Arrays
原文传递
导出
摘要 考虑二元独立非同分布高斯随机向量三角阵列最大值分布的渐近性及相关统计推断.此高斯三角阵的第n列的第i个向量服从二元高斯分布,其相关系数为i/n的函数并单调连续.首先建立了此高斯三角阵最大值分布的一阶和二阶渐近展开式.其次,分析相关系数参数估计及估计量的渐近性质.最后,通过随机模拟说明了相关系数之参数估计的有效性,并将该二元非同分布三角阵列模型应用于实际数据,得到了满意的结果. We establish the first and the second-order asymptotics of distributions of normalized maxima of independent and non-identically distributed bivariate Gaussian triangular arrays, where each vector of the n-th row follows from a bivariate Gaussian distribution with correlation coefficient being a monotone continuous positive function of i/n. Furthermore, parametric inference for this unknown function is studied. Some simulation study and real data sets analysis are also presented.
作者 廖昕 彭作祥
出处 《数学学报(中文版)》 CSCD 北大核心 2017年第2期297-314,共18页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11171275) 重庆市自然科学基金资助项目(cstc2012jjA00029) 上海理工大学博士启动项目(BSQD201608)
关键词 二元高斯随机向量 最大值 极限分布 二阶渐近展开 参数估计 bivariate gaussian random vector maximum limiting distribution second- order expansion parameter estimation
  • 相关文献

参考文献1

二级参考文献18

  • 1Benth F E, Kettler P C. Dynamic copula models for the spark spread. Quant Finance, 2011, 11:407-421.
  • 2Channouf N, L'Ecuyer P. A normal copula model for the arrival process in a call center. Int Trans Oper Res, 2012, 19:771 787.
  • 3Fan J, Gijbels I. Local Polynomial Modelling and Its Applications. New York: Chapman & Hall, 1996.
  • 4Frick M, Reiss R-D. Expansions and penultimate distributions of maxima of bivariate normal random vectors. Statist Probab Lett, 2013, 83:2563-2568.
  • 5Fung T, Seneta E. The bivariate normal copula function is regularly varying. Statist Probab Lett, 2011, 81:1670-1676.
  • 6Cu~gan D, Zhang J. Change analysis of a dynamic copula for measuring dependence in multivariate financial data. Quant Finance, 2010, 10:421 430.
  • 7Hall P, Heyde C C. Martingale Limit Theory and Its Application. New York: Academic Press, 1980.
  • 8Hashorva E. Elliptical triangular arrays in the max-domain of attraction of Hiisler-Reiss distribution. Statist Probab Lett, 2005, 72:125-135.
  • 9Hashorva E. On the multivariate Hiisler-Reiss distribution attracting the maxima of elliptical triangular arrays. Statist Probab Lett, 2006, 76:2027-2035.
  • 10Hiisler J, Reiss R-D. Maxima of normal random vectors: Between independence and complete dependence. Statist Probab Lett, 1989, 7:283-286.

共引文献2

同被引文献27

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部