期刊文献+

多交互式人工蜂群算法及其收敛性分析 被引量:9

Multiple interactive artificial bee colony algorithm and its convergence analysis
在线阅读 下载PDF
导出
摘要 针对人工蜂群(ABC)算法不易跳出局部最优解的缺点,提出了多交互式人工蜂群(MIABC)算法。该算法在基本人工蜂群算法的基础上引入随机邻域搜索策略,结合跨维搜索策略,且改进蜜蜂越限处理方式,使得算法搜索方式多样化,从而使得算法搜索更具跳跃性,不易陷入局部最优解,同时,对其进行收敛性分析和性能测试。在五种经典基准测试函数和时间复杂度实验上的仿真结果表明,相对于标准人工蜂群算法和基本粒子群优化(PSO)算法,该算法在1E-2精度下收敛速度提高了约30%和65%,搜索精度更优,且在高维求解问题方面有明显优势。 Aiming at the shortcomings of Artificial Bee Colony (ABC) algorithm, which is not easy to jump out of the local optimal value, a Multiple Interactive Artificial Bee Colony (MIABC) algorithm was proposed. The proposed algorithm was based on the basic ABC algorithm, involved the random neighborhood search strategy and the cross-dimensional search strategy, and improved the treatment when bees exceed the limit, so the search way of the algorithm became various, the algorithm itself had stronger bound and it's hard to trap in the local optimal value. Meanwhile, the convergence analysis and performance test were carried out. The simulation result based on five kinds of classic benchmark functions and experimental results for time complexity show that comparing with the standard ABC algorithm and basic Particle Swarm Optimization (PSO), this proposed method has faster convergence speed which is increased by about 30% and 65% at 1E -2 accuracy and better search precision, besides, it has significant advantages in solving high dimensional problems.
出处 《计算机应用》 CSCD 北大核心 2017年第3期760-765,共6页 journal of Computer Applications
基金 上海市教委科研创新项目(13YZ140)~~
关键词 人工蜂群算法 跨维度搜索策略 随机邻域搜索策略 搜索精度 收敛性分析 Artificial Bee Colony (ABC) algorithm cross-dimensional search strategy stochastic neighborhood search strategy search precision convergence analysis
  • 相关文献

参考文献7

二级参考文献105

  • 1恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 2KIM B M. A study on the convergence of genetic algorithms[ J]. Computers and Industrial Engineering, 1997, 33(3) : 581 - 588.
  • 3HE J, KANG L, CHEN Y. Convergence of genetic evolution algo- rithms for optimization [ J]. Parallel Algorithms and Applications, 1995, 4(1) : 37 - 56.
  • 4RIGAL L, TRUFFET L. A new genetic algorithm specifically based on mutation and selection [ J]. Advances in Applied Probability, 2007, 39(1) : 141 - 161.
  • 5毛盈旎.基于状态空间模型仿生算法的多目标无功优化[D].长沙:长沙理工大学,2009.
  • 6Tarun Kumar Sharma,Millie Pant.Differential Operators Embedded Artificial Bee Colony Algorithm[J].International Journal of Applied Evolutionary Computation (IJAEC).2011(3)
  • 7Mohammed El-Abd.Performance assessment of foraging algorithms vs. evolutionary algorithms[J].Information Sciences.2011(1)
  • 8Murat Albayrak,Novruz Allahverdi.Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms[J].Expert Systems With Applications.2010(3)
  • 9Dervis Karaboga,Bahriye Akay.A comparative study of Artificial Bee Colony algorithm[J].Applied Mathematics and Computation.2009(1)
  • 10Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.

共引文献67

同被引文献87

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部