期刊文献+

基于位置信息的移动SNS数据动态划分复制算法

Mobile SNS Data Dynamic Partitioning and Replication Algorithm Based on Location Information
在线阅读 下载PDF
导出
摘要 现有社交网络数据划分算法大多关注于好友关系和交互关系,忽略了位置信息,造成基于位置查询的响应时间较长。针对该问题,设计了一种移动社交网络双层社交图模型,该模型考虑了移动社交网络中用户交互行为的位置依赖性特点;并在此基础上提出了一种基于位置信息的移动社交网络数据动态划分复制算法MSDPR,该算法采用改进的K-Means算法对位置信息进行聚类,再根据聚类结果对数据进行划分,并利用社交关系进行数据的复制。实验结果表明:MSDPR算法在移动社交网络环境下能够有效地提高本地访问率,降低访问延迟,并且在动态加入数据时具有较好的适应性。 The existing social network data partitioning algorithms focus on the social relationship and interaction, with- out considering location information, which results in the long response time of location-based queries. To solve this problem, we designed a two-layer graph model of mobile social network which takes the location dependency of the user interaction behavior into account. We proposed a mobile SiNS data dynamic partitioning and replication algorithm based on location information-MSDPR. MSDPR divides data based on the clustered results generated by an improved K-Means clustering algorithm, and then replicates data by using the social relationships. Experiments reveal that MSD- PR can effectively improve the efficiency of the local access and reduce the latency of access in the mobile social net- work. Moreover, it also has better adaptability when adding data dynamically.
作者 王青芸 程春玲 WANG Qing-yun CHENG Chun-ling(College of Computer Seienee, Nanjing University of Posts and Teleeommunieations, Nanjing 210003, China)
出处 《计算机科学》 CSCD 北大核心 2017年第3期220-225,共6页 Computer Science
关键词 移动社交网 分布式存储 动态划分复制 位置信息 用户交互 Mobile social network, Distributed storage, Dynamic partitioning and replication, Location information, User mteractlon
  • 相关文献

参考文献1

二级参考文献60

  • 1Amazon SimpleDB. http://aws, amazon, com/simpledb/, 2011-8-10.
  • 2Connor Alexander G, Chrysanthis Panos K, Labrinidis Alexandros. Key key-value stores for efficiently processing graph data in the cloud//Proceedings of the GDM. Hannover, Germany, 2011:88-93.
  • 3Lordanov Borislav. HyperGraphDB: A generalized graph database//Proceedings of the IWGD. JiuZhai Valley, China, 2010:25-36.
  • 4Eifrem Emil. NOSQL: Scaling to size and scaling to complexity, http://blogs, neotechnology, com/emil/2009/11/ nosql-scaling tosize-and-scaling-to-complexity, html, 2009- 1-15.
  • 5Wu Sai, Jiang Da-Wei, Ooi Beng Chin et al. Efficient B-tree based indexing for cloud data proeessing//Proeeedings of the VLDB. Singapore, 2010: 1207-1218.
  • 6Wang Jin-Bao, Wu Sai, Gao Hong et al. Indexing multi dimensional data in a cloud system//Proceedings of the SIGMOD. Indianapolis, Indiana, USA, 2010: 591-602.
  • 7Tsatsanifos George, Sacharidis Dimitris, Sellis Timos et al. MIDAS: Multi-attribute indexing for distributed architecture systems//Proceedings of the SSTD. Minneapolis, MN, USA, 2011:168-185.
  • 8Aguilera M K, Golab W, Shah M A. A practical scalable distributed B-tree//Proceedings of the VLDB. Auckland, New Zealand, 2008: 598-609.
  • 9Zhang Xiang-Yu, Ai Jing, Wang Zhong-Yuan, Lu Jia-Heng et al. An efficient multi-dimensional index for cloud data management//Proceedings of the CloudDB. Hong Kong, China, 2009:17-24.
  • 10InfiniteGraph, the Distributed Graph Database. http:// www. infinitegraph, com/, 2011 -7 -29.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部