期刊文献+

基于图像处理的交通灯检测技术 被引量:5

Traffic lights detection technology based on image processing
在线阅读 下载PDF
导出
摘要 针对城市交通安全和路口通行效率等问题,研究一种交通信号灯检测的技术。采用亮度分析、图像分割和形态学滤波对采集的图像进行预处理,排除背景干扰;利用RGB颜色空间下的颜色各通道差值分布检测交通灯颜色;最后基于对图像[0°,180°]的Radon变换找出峰值对应的角度,对图像在该角度上分别进行变换,利用形状特征对交通灯进行形状检测。采集自然环境下图像进行试验。结果表明,该算法的正确识别率达到90%以上,是一种较好的交通信号灯检测方法。 A traffic lights detection technology is studied to solve the problems of urban traffic safety and crossroad traffic efficiency. The brightness analysis, image segmentation and morphological filtering are used to preprocess the acquired image to eliminate the background interference. The three-channel difference distribution of the three traffic lights' colors in RGB color space is adopted to detect the color of traffic lights. On the basis of the Radon transform for the image in 0°-180°, the angle corresponding to the peak value is found out, on which the image is transformed. The shape feature is employed to detect the shape of the traffic lights. The image acquired in the natural environmental was tested. The results show that the correct recognition rate of the algorithm is higher than 90%, which is a good method for traffic light detection.
出处 《现代电子技术》 北大核心 2017年第8期103-106,共4页 Modern Electronics Technique
基金 国家自然科学基金(61273151 61004053 51376096) 江苏省自然科学基金(BK20141238)
关键词 图像处理 交通灯检测 RGB RADON变换 image processing traffic lights detection RGB Radon transform
  • 相关文献

参考文献3

二级参考文献37

  • 1YEHU S,UMIT O,KEITH R.A robust video based traffic light detection algorithm for intelligent vehicles[C]//IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2009:521-526.
  • 2KIM Y K,KIM K W,YANG XIAOLI.Real time traffic light recognition system for color vision deficiencies[C]//ICMA 2007:IEEE International Conference on Mechatronics and Automation.Washington,DC:IEEE Press,2007:76-81.
  • 3HWANG T-H,JOO I-H,CHO S-I.Detection of traffic lights for vision-based car navigation system[C]// PSIVT 2006:Pacific Rim Symposium on Advances in Image and Video Technology,LNCS 4319.Berlin:Springer-Verlag,2006:682-691.
  • 4CHUNG Y-C,WANG J-M,CHEN S-W.A vision-based traffic light system at intarsections[J].Journal of Taiwan Normal University:Mathematics,Science and Technology,2002,47(1):67-86.
  • 5de CHARETTE R,NASHASHIBI F.Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates[C]// IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2009:358-363.
  • 6LINDNER F,KRESSEL U,KAELBERER S.Robust recognition of traffic signals[C]// IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2004:49-53.
  • 7TSAI D-M,LIN C-T.Fast normalized cross correlation for defect detection[J].Pattern Recognition Letters,2003,24(15):2625-2631.
  • 8[美]GONZALEZ R C,WOODS R E,EDDINS S L.数字图像处理:Madab版[M].阮秋琦,译.北京:电子工业出版社,2007,278-282.
  • 9Priya T K, Kumar P R, Sridharan K. A hardware-efficient schemeand FPGA realization for computation of single pair shortest path for amobile automaton. Microprocessors and Microsystems, 2006 ; 30(7) : 413-424.
  • 10Zhang Y, Jun Y, Wei G, et al. Find multi-objective paths in sto-chastic networks via chaotic immune PSO. Expert Systems with Ap-plications, 2010; 37(3); 1911-1919.

共引文献34

同被引文献35

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部