期刊文献+

一种组合核相关向量机的短时交通流局域预测方法 被引量:26

A short-term traffic flow local prediction method of combined kernel function relevance vector machine
在线阅读 下载PDF
导出
摘要 为有效提高短时交通流预测的精度,提出一种基于组合核相关向量机模型的短时交通流局域预测方法.首先利用C-C方法实现相空间重构,然后根据Hannan-Quinn准则确定邻近点个数,进而构建基于粒子群优化的组合核相关向量机模型,最后采用上海市南北高架快速路的感应线圈实测数据进行实验验证和对比分析.实验结果表明:基于组合核相关向量机模型的短时交通流局域预测方法的预测误差和均等系数均优于对比方法,其中,平均绝对百分比误差比GKF-RVM模型、GKF-SVM模型和加权一阶局域预测模型分别降低了29.2%、47.5%和59.5%,能够进一步提高短时交通流预测的精度. In order to improve the prediction accuracy of short-term traffic flow effectively,a short-term traffic flow local prediction method based on a combined kernel function relevance vector machine( CKF-RVM) model was proposed. Firstly,the C-C method was used to realize phase space reconstruction. Secondly,the number of neighboring points was determined by use of Hannan-Quinn criteria. Then,the CKF-RVM model was constructed based on particle swarm optimization algorithm. Finally,validation and comparative analysis was carried out using inductive loop data measured from the north-south viaduct in Shanghai. The experimental results demonstrate that the prediction error and the equal coefficient of the proposed method are both superior to the contrastive method.The MAPEs of the proposed method are 29. 2%,47. 5% and 59. 5% lower than GKF-RVM model,GKF-SVM model and weighted first-order local prediction model,which can further improve the prediction accuracy of shortterm traffic flow.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第3期144-149,共6页 Journal of Harbin Institute of Technology
基金 "十二五"国家科技支撑计划(2014BAG03B03) 国家自然科学基金青年基金(51308248 51408257)
关键词 交通工程 相空间重构 C-C方法 组合核 相关向量机模型 短时交通流预测 traffic engineering phase space reconstruction C-C method combined kernel function relevance vector machine model short-term traffic flow prediction
  • 相关文献

参考文献9

二级参考文献57

共引文献291

同被引文献250

引证文献26

二级引证文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部