期刊文献+

基于Adaboost的动物二分类识别方法 被引量:4

Method of Animals' Dichotomous Recognition Based on Adaboost
在线阅读 下载PDF
导出
摘要 针对动物图像的分类识别问题,提出了一种基于Adaboost分类器的动物二分类识别方法。首先对样本图片进行边缘特征提取,选取八种具有显著形状不变性的特征描绘子,并对其合理性和优越性进行验证。后用Adaboost分类器对所得特征矩阵进行训练,得到最有效的分类特征,并对从Shape Database形状图片库中选取三组动物图像进行十折交叉验证实验。狗和牛、牛和象、青蛙和牛的正确分类识别率分别达到85%、90%和92.5%。实验表明该分类识别方法能较准确进行二分类识别,是一种较有效的动物图像二分类识别方法。 To solve the classified problems of animal's images,a classified method based on Adaboost is designed for dichotomic recognition.First,edge features of sample images are extracted.Then,eight characteristic descriptors having significant shape invariances are selected and their rationalities and superiorities are tested.Adaboost classifier to train the matrix of characteristics,aiming to get the most effective classifying feature.Experiment on the three groups of animals'images selected from the photo gallery called Shape Database through 10-fold cross-validation.The identified rates of classification of dogs and cattles,cattles and elephants,frogs and cattles reach 85 percent,90percent and 92.5percent respectively.The experiment shows the classified method can classify images comparatively accurate into two sorts and it is rather definitely an effective way to classify animals'images into two categories.
出处 《计算机与数字工程》 2017年第4期720-726,767,共8页 Computer & Digital Engineering
基金 国家级大学生创新创业训练计划资助项目(编号:201610145014) 中国博士后科学基金资助项目(编号:2016M591446) 中央高校基本科研业务费(编号:N140503004) 国家自然科学基金青年科学基金资助项目(编号:61402097)资助
关键词 动物分类识别 ADABOOST分类器 特征描绘子 十折交叉验证 二分类 animal classification Adaboost classifier characteristic descriptors 10-fold cross-validation dichotomic
  • 相关文献

参考文献1

二级参考文献10

  • 1Scholkopf B,Burges C J C,Smola A J.Advances in kernel methods: Support vector learning[M].Cambridge: M1T Press, 1998.
  • 2Scholkopf B,Sung K,Burges C,et al.Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Transactions on Signal Processing, 1997,45:2758-2765.
  • 3Osuna E,Freund R, Girosi F.Training support vector machines: An application to face detection[C]//Proceeding of the 1997 Computer Vision and Pattern Recognition(CVPR'97),Puerto Rico,June 1997: 130-136.
  • 4Mangasarian O L,Solodov M V.Nonlinear complementarity as unconstrained and constrained minimization[J].Math Program:Ser B, 1993,62: 277-297.
  • 5Fung G,Mangasarian O L.Finite Newton method for Lagrangian support vector machine classification [J].Neurocomputing,2003,55 : 39-55.
  • 6Mangasarian O L.A finite Newton method for classification[J].Optimization Methods and Software,2002,17:913-929.
  • 7Facchinei F.Minimization of SC functions and the Maratos effect[J]. Oper Res Lett, 1995,17:131-137.
  • 8Hiriart-Urruty J B,Strodiot J J.Nguyen V H.Generalized Hession matrix and second-order optimality condition for problems with C^LI data[J].Appl Math Optim,1984,11:43-56.
  • 9Liu Yu-Hsin.Global maximum likelihood estimation procedure for muhinomial probit model parameters[J].Transportation Research Part B : Methodological, 2008,34 (5) :419-449.
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:42

共引文献18

同被引文献14

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部