期刊文献+

基于模拟退火算法和发送行为的垃圾邮件检测模型

A Spam Detection Model Based on Simulated Annealing Algorithm and Sending Behavior
在线阅读 下载PDF
导出
摘要 垃圾邮件给当今人们的生活带来严重的负面影响.虽然已经有很多过滤方法,但大多存在一定的不足之处,如检测时间长、召回率低等问题.本文提出了一种基于模拟退火算法和发送行为的垃圾邮件检测模型,旨在弥补已有检测方法的不足.模拟退火算法可能找到全局最优解,且收敛性强;而基于发送行为的垃圾邮件检测技术能显著提高服务器处理垃圾邮件的速度.本文尝试将二者相结合,以提高垃圾邮件的召回率及服务器处理能力.通过实验结果可以看出,该方法在垃圾邮件的召回率上有较大提升,较适于部署在小型邮件服务器上. Spam has brought serious negative impact on people's life today. Many filtering methods have been proposed, but less perfect. In this essay, a detection model based on simulated annealing algorithm and sending behavior is presented to cover some shortcomings of the existing methods.Simulated annealing algorithm can find the global optimal solution, and the convergence is strong, and the spam detection technology based on sending behavior can significantly improve the speed of the server to deal with spam. Through experiments,the recall rate of spam is significantly improved based on the model and it is more suitable for deployment in small mail server.
作者 张汛 刘朝晖
出处 《南华大学学报(自然科学版)》 2017年第1期77-80,共4页 Journal of University of South China:Science and Technology
基金 南华大学研究生科研创新项目(2016XCX16)
关键词 垃圾邮件 模拟退火算法 发送行为 spare simulated annealing algorithm sending behavior
  • 相关文献

参考文献7

二级参考文献43

  • 1卢新国,林亚平,陈治平.一种改进的互信息特征选取预处理算法[J].湖南大学学报(自然科学版),2005,32(1):104-107. 被引量:12
  • 2李惠娟,高峰,管晓宏,黄亮.基于贝叶斯神经网络的垃圾邮件过滤方法[J].微电子学与计算机,2005,22(4):107-111. 被引量:21
  • 3张铭锋,李云春,李巍.垃圾邮件过滤的贝叶斯方法综述[J].计算机应用研究,2005,22(8):14-19. 被引量:24
  • 4王雪梅,硕士学位论文,1995年
  • 5史忠植.高级人工智能[M].北京:科学出版社,1997..
  • 6边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 7Robertson S E.The probability ranking principle in IR,readings in information retrieval[M].[S.l.]:Morgan Kaufmann,1997:281-286.
  • 8Salton.Automatic text processing:the transformation,analysis and retrieval of information by computer[M].[S.l.]:Addison-Wesley Inc,1989.
  • 9Witten I H,Frank E.Data mining:practical machine learning tools and techniques with Java implementations[M].[S.l.]:Morgan Kaufmann,2000.
  • 10Joachims T.Optimizing search engines using click through data[C]//Proceedings of the ACM Conference on Knowledge Discovery and Data Mining(KDD),ACM,2002.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部