期刊文献+

基于图像归一化和NSST的鲁棒零水印算法 被引量:3

Robust zero-watermark algorithm based on image normalization and non-subsampled shearlet transform
在线阅读 下载PDF
导出
摘要 为了更有效地提取数字漫画的边缘轮廓特征,提出一种基于图像归一化和非下采样剪切波变换(NSST,non-subsampled shearlet transform)的零水印算法.首先,将数字漫画图像进行归一化处理.然后,采用NSST和离散余弦变换(DCT)提取图像的低频分量,再采用非负矩阵分解(NMF,non-negative matrix factorization)提取特征向量作为图像的特征信息;处理水印图像时,采用基于完全互补码的扩频技术和混沌置乱技术以提高算法的鲁棒性和安全性.最后,对数字漫画图像的特征信息与水印图像进行异或逻辑运算得到零水印.实验结果表明,本文算法在抵抗高斯噪声、椒盐噪声、几何变换、JPEG压缩、邻域滤波等攻击时都具有很强的鲁棒性,同时能够抵抗一定程度的剪切攻击. A zero-watermark algorithm based on image normalization and non-subsampled shearlet transform (NSST) is purposed to extract the edge contour feature of digital cartoon more effectively. In this method, the image is processed with the method of image normalization firstly. Then, the low-frequency component is extracted with NSST and DCT. Next, the feature vector is extracted with NMF and put it as the feature information. For the watermark image, the spread spectrum technology based on complete complementary codes and chaotic scrambling technology are used to improve the robustness and security of the algorithm. Finally, the zero-watermark is derived by making the feature information of the cartoon image and the watermark image do XOR operation. The experimental results show that the method is very robust against Gaussian noise, salt pepper noise, geometric transformation, JPEG compression and neighborhood filtering attacks, and can resist on cropping attacks to some extent.
作者 孙俞超 李德
出处 《延边大学学报(自然科学版)》 CAS 2017年第1期43-50,共8页 Journal of Yanbian University(Natural Science Edition)
基金 吉林省教育厅"十三五"科学技术研究项目(吉教科合字[2016]第249号) 国家自然科学基金资助项目(61262090)
关键词 零水印 图像归一化 非下采样剪切波变换(NSST) 完全互补码 zero-watermark image normalization non-subsampled shearlet transform (NSST) complete complementary code
  • 相关文献

参考文献3

二级参考文献36

  • 1周亚训,盖娜,金炜.基于离散运算的鲁棒数字图像双水印算法研究[J].光电子.激光,2009,20(11):1493-1497. 被引量:5
  • 2王延玉,张明强,王佐臣.基于DCT变换域的数字水印技术[J].福建电脑,2006,22(9):20-21. 被引量:2
  • 3Lee D D, Seung H S. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001,13:556 - 562.
  • 4Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755) :788 - 791.
  • 5胡广书.数字信号处理理论、算法与实现[M].2版.北京:清华大学出版社,2008:363-393.
  • 6Gonzalez R C.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2005.
  • 7GB/T18284-2000,快速响应矩阵[S].
  • 8Joseph J K,Ruanaidh 0,Pun T. Rotation,scale and trans-lation invariant digital image watermarking [J]. SignalProcessing,1998,66(3):303- 317.
  • 9ZHENG Dong,ZHAO Ji-ying, El S A. RST-invariant digitalimage watermarking based on log-polar mapping andphase correlation[J]. IEEE Transactionson Circuits andSystems for Video Technology,2003,13(8) :753-765.
  • 10KANG Xian-gui,HUANG Ji-wu, YUN Shi,et al. A DWT-DFT composite watermarking scheme robust to both af-fine transform and JPEG compression[A]. IEEE Transac-tions on Circuits and Systemsfor Video Technology[C].2003,12:776-786.

共引文献42

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部