期刊文献+

基于多维航迹特征的异常行为检测方法 被引量:25

Anomalous behavior detection method based on multidimensional trajectory characteristics
原文传递
导出
摘要 在信息融合领域,利用数据挖掘中的异常检测技术,可以基于目标的多维航迹特征来挖掘目标的异常行为。现有轨迹异常检测方法主要检测目标的位置异常,没有充分利用目标的属性、类型、位置、速度和航向等多维特征,在挖掘目标的异常行为时具有局限性。通过定义多因素定向Hausdorff距离和构造多维度局部异常因子,提出了一种基于多维航迹特征的异常行为检测方法,通过对多维航迹数据的异常检测,实现对目标异常行为的挖掘。在仿真军事场景和真实的民用场景上进行了实验分析,所提方法都能有效的检测出目标的异常行为。 In the information fusion domain, anomalous behaviors could be mined based on multidimensional trajectory characteristics by using the anomalous detection technique in data mining. Previous trajectory anomaly detection algorithms mainly detect the position anomalies, without making full use of the attribute, category, position, velocity, and course characteristics. In order to overcome this limitation, we define the multi-factor Hausdorff distance, construct the multidimensional local outlier factor, and propose a method for detecting anomalous behaviors based on multidimensional trajectory characteristics. The method can mine anomalous behaviors based on detecting multidimensional trajectories. We conducted experiments on simulated military scenario and real civilian scenario, the proposed method can effectively detect the anomalous behavior of the target.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第4期249-258,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61531020 61471383 91538201) 山东省科技重大专项基金(2015ZDZX01001)~~
关键词 异常行为 航迹 多维特征 局部异常因子 HAUSDORFF距离 anomalous behavior trajectory multidimensional characteristics local outlier factor Hausdorff distance
  • 相关文献

参考文献2

二级参考文献31

  • 1白松浩.多雷达与ADS数据融合的可变周期更新算法[J].交通运输工程学报,2007,7(2):19-23. 被引量:12
  • 2Knorr EM, Ng RT, Tucakov V. Distance-Based outliers: Algorithms and applications. VLDB Journal, 2000,8(3):237-253.
  • 3Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000. 427-438.
  • 4Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000.93-104.
  • 5Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C. LOCI: Fast outlier detection using the local correlation integral. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the ICDE 2003. New York: IEEE Computer Society, 2003.315-326.
  • 6Aggarwal CC, Yu PS. Outlier detection for high dimensional data. In: Aref WG, ed. Proc. of the SIGMOD 2001. New York: ACM, 2001.37-46.
  • 7Lee J, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework. In: Proe. of the ICDE 2008. New York: IEEE Computer Society, 2008. 140-149.
  • 8Chen J, Maylor K. Leung, Gao Y. Noisy logo recognition using line segment hausdorff distance. Pattern Recognition, 2003,36(4): 943-955.
  • 9Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.
  • 10Huttenlocher DP, Kcdem K, Sharir M. The upper envelope of voronoi surfaces and its applications. Discrete and Computational Geometry, 1993,9(1):267-291,.

共引文献41

同被引文献170

引证文献25

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部