期刊文献+

动态背景下基于光流场分析的运动目标检测算法 被引量:15

Moving object detection based on optical flow field analysis in dynamic scenes
在线阅读 下载PDF
导出
摘要 针对现有动态背景下运动目标检测算法的不足,提出一种基于光流场分析的运动目标检测算法.首先根据前背景在光流梯度幅值和光流矢量方向上的差异确定目标的大致边界,然后通过点在多边形内部原理获得边界内部的稀疏像素点,最后以超像素为节点,利用混合高斯模型拟合的表观信息和超像素的时空邻域关系构建马尔可夫随机场模型的能量函数,并通过使目标函数能量最小化得到最终的运动目标检测结果.该算法不需要任何先验假设,能够同时处理动态背景和静态背景两种情况.多组实验结果表明,本文算法在检测的准确性和处理速度上均优于现有算法. To overcome the limitation of existing algorithms for detecting moving objects from the dynamic scenes,a foreground detection algorithm based on optical flow field analysis is proposed.Firstly,the object boundary information is determined by detecting the differences in optical flow gradient magnitude and optical flow vector direction between foreground and background.Then,the pixels inside the objects are obtained based on the point-in-polygon problem from computational geometry.Finally,the superpixels per frame are acquired by over-segmenting method.And taking the superpixels as nodes,the Markov Random field model is built,in which the appearance information fitted by Gaussian Mixture Model is combined with spatiotemporal constraints of each superpixel.The final foreground detection result is obtained by finding the minimum value of the energy function.The proposed algorithm does not need any priori assumptions,and can effectively realize the moving object detection in dynamic and stationary background.The experimental results show that the proposed algorithm is superior to the existing state-of-the-art algorithms in the detection accuracy,robustness and time consuming.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2017年第8期97-104,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61501470)资助的课题~~
关键词 动态背景 运动目标检测 光流场分析 马尔可夫随机场模型 dynamic scene moving object detection optical flow field analysis Markov random field model
  • 相关文献

参考文献1

二级参考文献16

  • 1Soo Wan Kim,Kimin Yun,Kwang Moo Yi,Sun Jung Kim,Jin Young Choi.Detection of moving objects with a moving camera using non-panoramic background model[J]. Machine Vision and Applications . 2013 (5)
  • 2Kang Xue,Yue Liu,Gbolabo Ogunmakin,Jing Chen,Jiangen Zhang.Panoramic Gaussian Mixture Model and large-scale range background substraction method for PTZ camera-based surveillance systems[J]. Machine Vision and Applications . 2013 (3)
  • 3Peter Sand,Seth Teller.Particle Video: Long-Range Motion Estimation Using Point Trajectories[J]. International Journal of Computer Vision . 2008 (1)
  • 4Ying Ren,Chin-Seng Chua,Yeong-Khing Ho.Motion detection with nonstationary background[J]. Machine Vision and Applications . 2003 (5-6)
  • 5Brox T,Malik J.Object segmentation by long term analysis of point trajectories. Lecture Notes in Computer Science . 2010
  • 6Elqursh A,Elgammal A.Online moving camera background subtraction. Lecture Notes in Computer Science . 2012
  • 7Hartley R,Zisseiman A.Multiple view geometry in computer vision. . 2003
  • 8Goyette N,Jodoin P M,Porikli F,et al.Changedetection.net:a new change detection benchmark dataset. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops . 2012
  • 9Tron R,Vidal R.A benchmark for the comparison of3-D motion segmentationalgorithms. Proceedings of the IEEE Conference on Computer Vision andPattern Recognition (CVPR) . 2007
  • 10Arbeláez, Pablo,Maire, Michael,Fowlkes, Charless,Malik, Jitendra.Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011

共引文献5

同被引文献112

引证文献15

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部