期刊文献+

Fe-OMC复合材料的有机自组装模板法制备及其对亚硝酸钠的电催化性能研究

Mesoporous carbon loaded with iron nanoparticles by organic self-assembly method and its electrocatalytic performance for nitrite
在线阅读 下载PDF
导出
摘要 借助有机自组装一步软模板法制备了铁纳米负载的有序介孔碳复合材料(Fe-OMC),用TEM、XRD和电化学技术对复合材料的结构、形态、组成等进行了表征,利用电化学技术研究了目标分子NaNO_2在Fe-OMC修饰电极表面的电子转移过程.界面电荷转移、界面电催化相关电化学研究发现,该复合材料修饰电极能够有效降低NaNO_2的过电位,对NaNO_2表现出良好的电催化氧化性能,其速率常数为52.51L·mol^(-1)·s^(-1),约为裸电极的1000多倍,有望将其用于NaNO_2的电化学催化及分析传感研究. Herein, ordered mesoporous carbon nanocomposite loaded with iron nanoparticle(Fe-OMC) isreported through one step preparation by using soft template method of organic-organic self-assembly, andthe electrocatalytic performance of the proposed nanocomposite toward nitrite is studied. The as-gainednanocomposites have been characterized by transmission electron microscopy (SEM), X-ray diffraction(XRD) and electrochemical technology. Then, the electron transfer process of nitrite on the Fe-OMCnanocomposite modified electrode surface is systematically investigated. The results indicate that this kindof modified electrode can largely lower the overpotential of sodium nitrite and further demonstrating asuperior electrocatalytic oxidation performance of the proposed nanocomposite for the target molecule ofsodium nitrite. Moreover, the catalytic rate constant of the modified electrodes is 52.51 L.mo1-1o s-1,which is approximately 1000 times over the bare electrode because of the existence of iron nanoparticles inthe proposed nanocomposite. All these results suggest that the proposed nanocomposite of orderedmesoporous carbon loaded with iron nanoparticles as an excellent electrode material can open a door for itsfurther application in eleetrocatalysis and biosensors.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期63-68,134,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(21665023)
关键词 软模板法 有机-有机自组装 有序介孔碳 亚硝酸钠 soft template method organic-organic self-assembly ordered mesoporous carbon sodiumnitrite
  • 相关文献

参考文献1

二级参考文献21

  • 1Ryoo, R.; Joo, S. H. J. Phys. Chem. B, 1999, 103(37): 7743
  • 2Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.;Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc., 2000, 122(43): 10712
  • 3Kruk, M.; Jaroniec, M.; Kim, T. W.; Ryoo, R. Chem. Mater., 2003, 15(14): 2815
  • 4Zhang, F. Q.; Meng, Y.; Gu, D.; Yan, Y.; Yu, C. Z.; Tu, B.; Zhao, D. J. Am. Chem. Soc., 2005, 127(39): 13508
  • 5Lu, A. H.; Schmidt, W.; Spliethoff, B. Adv. Mater., 2003, 15(19): 1602
  • 6Lu, A. H.; Li, W. C.; Schmidt, W.; Schuth, F. Microporous and Mesoporous Materials, 2005, 80(1-3): 117
  • 7Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature, 2001, 412(6843): 169
  • 8Nam, J. H.; Jang, Y. Y.; Kwon, Y. U.; Nam, J. D. Electrochemistry Communications, 2004, 6(7): 737
  • 9Ding, J.; Chan, K. Y.; Ren, J. W.; Xiao, F. S. Electrochimica Acta, 2005, 50(15): 3131
  • 10Choi, W. C.; Woo, S. I.; Jeon, M. K.; Sohn, J. M.; Kim, M. R.; Jeon, H. J. Adv. Mater., 2005, 17(4): 446

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部