期刊文献+

立体空心血管网水凝胶支架的3D打印工艺研究 被引量:15

3D Printing Process for Hydro Gel with the Three-dimensional Micro Tubes to Mimic Vascular Network
在线阅读 下载PDF
导出
摘要 搭建同轴喷头打印系统,研究氯化铁溶液对由同轴针头打印出的藻酸盐水凝胶空心圆管的机械强度和成型结构的影响,建立3D打印优化工艺。将质量分数为2%~4%的海藻酸钠和质量分数为4%的氯化钙通过同轴针头打印出空心圆管。将质量分数为0.25%的雾化氯化铁溶液与空心圆管反应得到有氯化铁反应的空心圆管,力学试验发现经过与0.25%氯化铁反应的空心圆管的弹性模量(0.4677 MPa±0.279 MPa(2%海藻酸钠),2.0153 MPa±0.221 MPa(3%海藻酸钠),11.684 MPa±0.332 MPa(4%海藻酸钠))是无氯化铁溶液反应的空心圆管的弹性模量的5.4倍(2%),14.2倍(3%)和43.3倍(4%),其力学强度大大增强。机械强度增强的空心圆管完成了立体网络结构和螺旋结构的复杂类血管网,通过水凝胶溶液将其封装形成生物支架。灌流实验和细胞毒性试验表明该支架具有良好的生物相容性,可有效运输和灌注细胞培养液,满足了组织工程中制造大块软组织的工程化需求。 A coaxial nozzle printing system is built to investigate the influence of ferric chloride solution to the mechanical strength and shape structure of sodium alginate hollow tube. The optimization process of 3D printing is fiarther determined. The concentration of 2%- 4% sodium alginate and the concentration of 4% of calcium chloride is used to print hollow tubes through the coaxial probe. The concentration of 0.25% of atomizing ferric chloride solution is used to reinforced to the calcium alginate hollow tubes. Mechanics experiment prove that the Young's modulus of the reinforced hollow tube (0.467 7 MPa±0.279 MPa(2% sodium alginate), 2.015 3 MPa±0.221 MPa(3% sodium alginate), 11.684 MPa±0.332 MPa(4% sodium alginate)) are 5.4 times(2%),14.2 times(3%) and 43.3 times(4%) as the sodium alginate hollow tubes. The reinforced hollow tubes are used to print complex vascular networks such as lattice structure and spiral structure. The vascular networks are encapsulated with hydro gel solution to get the biological scaffold. Perfusion experiment and cell toxicity test show that the scaffolds had good biocompatibility and it is feasible to be effectively transported cells culture medium. Therefore, printed scaffolds can meet the demand of manufacturing large soft tissues in tissue engineering.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2017年第9期180-186,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51375371 51323007) 国家高技术研究发展计划(863计划 2015AA020303)资助项目
关键词 三维打印 仿生设计 生物支架 空心圆管 海藻酸钠 氯化铁 3D Printing bionic design biological scaffold micro tube sodium alginate ferric chloride
  • 相关文献

参考文献1

二级参考文献18

  • 1王丽娟,贾大林,齐国先.成年小鼠心肌细胞的分离培养及鉴定[J].中国实验动物学报,2007,15(3):175-178. 被引量:7
  • 2Baum J,Duffy HS. Fibroblasts and myofibroblasts:what are we talking about[J].Journal of Cardiovascular Pharmacology,2011,(04):376-379.
  • 3Ranch U. Tissue factor and cardiomyocytes[J].Thrombosis Research,2012,(Suppl 2):S41-S43.
  • 4Daskalopoulos EP,Janssen BJ,Blankesteijn WM. Myofibroblasts in the infarct area:concepts and challenges[J].Microscopy and Microanalysis,2012,(01):35-49.
  • 5Souders CA,Bowers SL,Baudino TA. Cardiac fibroblast:the renaissance cell[J].Circulation Research,2009,(12):1164-1176.doi:10.1161/CIRCRESAHA.109.209809.
  • 6Vasquez C,Benamer N,Morley GE. The cardiac fibroblast:functional and electrophysiological considerations in healthy and diseased hearts[J].J Cardiovase Ph 1,2011,(04):380-388.
  • 7Tumer NA. Therapeutic regulation of cardiac fibroblast function:targeting stress-activated protein kinase pathways[J].FUTURE CARDIOLOGY,2011,(05):673-691.
  • 8Coulombe PA,Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds[J].Nature Cell Biology,2004,(08):699-706.doi:10.1038/ncb0804-699.
  • 9Kresh JY,Chopra A. Intercellular and extracellular mechanotransduction in cardiac myocytes[J].Pflugers Archive,2011,(01):75-87.
  • 10Camelliti P,Borg TK,Kohl P. Structural and functional characterisation of cardiac fibroblasts[J].Cardiovascular Research,2005,(01):40-51.doi:10.1016/j.cardiores.2004.08.020.

共引文献2

同被引文献98

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部