期刊文献+

Combined Adaptive Multiple Subtraction Based on Optimized Event Tracing and Extended Wiener Filtering 被引量:3

Combined Adaptive Multiple Subtraction Based on Optimized Event Tracing and Extended Wiener Filtering
在线阅读 下载PDF
导出
摘要 The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas. The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
出处 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第3期411-421,共11页 中国海洋大学学报(英文版)
基金 support of the National Natural Science Fundation of China (Nos. 41574105 and 41674118) the National Science and Technology Major Project of China (No. 2016ZX05027-002) the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03)
关键词 multiple adaptive attenuation surface-related multiple prediction Wiener filtering short-time window FK filtering event tracing technique multiple adaptive attenuation surface-related multiple prediction Wiener filtering short-time window FK filtering event tracing technique
  • 相关文献

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部