期刊文献+

基于改进SURF算法的单目视觉里程计 被引量:8

Monocular visual odometry based on the improved SURF Algorithm
在线阅读 下载PDF
导出
摘要 针对传统单目视觉里程计在特征提取过程中误匹配点过多,匹配精度低、运算量大、提出了一种基于改进SURF算法的单目视觉里程计模型,首先使用SURF算法对单目摄像头采集的图像的相邻两帧进行特征点的检测与匹配,然后用RANSAC算法对误匹配点进行剔除,提高匹配的精度,减少运算量,最终求出相邻两帧图像特征点匹配的旋转矩阵R和平移向量T,完成运动估计。实验结果表明,该模型在预估曲线运动和直线运动时的运算速度分别提高了11.2%和10.38%。 In traditional monocular visual odometries, there are many false match points, low match accuracy, large amount of computation during the feature extraction process of the traditional monocular visual odometry. This paper presents an improved monocular visual odometry model based on the SURF algorithm, The feature points between two adjacent frames are detected and matched with the SURF algorithm. The RANSAC algorithm is applied to remove the error feature points. Then, the rotation matrix R and shift vector T between two adjacent frames are calculated to accomplish the motion estimation. The experiment results show that the computing speed is accelerated by 11.2% and 10. 380/oo in the curve motion and the straight motion, respectively, with the proposed visual odometry estimating model.
出处 《电子测量技术》 2017年第5期185-188,200,共5页 Electronic Measurement Technology
基金 国家自然科学基金(60777018)资助项目
关键词 SURF算法 RANSAC算法 单目视觉里程计 旋转矩阵 平移向量 SURF RANSAC monocular visual odometry rotation matrix shift vector
  • 相关文献

参考文献6

二级参考文献96

  • 1李刚,程志峰.基于FPGA的实时电子稳像[J].仪器仪表学报,2013,34(S1):8-13. 被引量:15
  • 2曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 4赖作镁,王敬儒,张启衡.基于鲁棒背景运动补偿的运动目标检测算法[J].计算机应用研究,2007,24(3):66-68. 被引量:10
  • 5Fabian Campbell-West,Paul Miller. Independent Moving Object Detection using a Colour Background Model [ C ]//Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. Sydney : IEEE ,2006 :31 - 31.
  • 6Ashraf Elinagar, Anup Basu. Robust Detection of Moving Objects by a Moving Observer on Planar Surfaces [ C ]//IEEE international Conference on Robotics and Antomation. Nagoya, Aichi, Japan: IEEE, 1995: 2347 - 2352.
  • 7Jin Sunglee, Kwang-Yeon Rhee, Seong-Dae Kim. Moving Target Tracking Algorithm Based on The Confidence Measure of Motion Vectors [ C ]//Proc. IEEE International Conference on Image Processing. Thessaloniki, Greece : IEEE ,2001:369 - 372.
  • 8Zhaozheng Yin, Robert Collins. Moving Object Localization in Thermal Imagery by Forward-backward MHI [ C ]//Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition. New York:IEEE ,2006 : 133 - 133.
  • 9Ninad Thakoor, Jean Gao. Automatic Video Object Shape Extraction and Its Classification With Camera In Motion [ C ]//Proc. IEEE International Conference on Image Processing, Genova: IEEE, 2005:437 - 440.
  • 10Lucas B, Kanade T. An iterative image registration technique with application to stereo vision [ C ]//International Joint Conference on Artificial Intelligence. Vancouver: IEEE, 1981:674 - 679.

共引文献85

同被引文献42

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部