期刊文献+

基于无标度与分形理论的层次知识网络原理解析 被引量:11

Analysis on the Principle of Knowledge Network at Level Based on Scale-free and Fractal Theory
原文传递
导出
摘要 [目的/意义]在保障知识网络的整体性征的条件下,从原始知识网络中提取具有显著意义的层次知识网络,奠定基于关联频度提取层次知识网络的理论基础。[方法/过程]以无标度网络与分形几何作为基础理论支撑,在对关键词知识网络和标签知识网络关联频度分布进行分析的基础上,采用关联频度作为阈值提取层次知识网络。并对层次知识网络的无标度性和小世界效应两项网络整体性征进行验证。[结果/结论]知识网络的关联频度分布服从幂律分布。以关联频度为阈值提取的层次知识网络在节点度值分布和关联频度分布方面都保持了原始整体网络的无标度性。层次知识网络能够很好地保持原始网络所具有的小世界特征。基于关联频度提取的层次知识网络与原始知识网络等效。 [ Purpose/significance ] Under the condition of guaranteeing the whole character of knowledge networks, this paper aims to extract a significant knowledge networks at level from the original knowledge networks, in order to estab- lish the theoretical basis of the knowledge network at level extracted by correlation frequency. [ Method/process] Under the basic theory support of scale-free network and fractal geometry, based on the analysis on the correlation frequency dis- tribution of keywords knowledge network and tags knowledge network, this article extracts the knowledge networks at level using the correlation frequency as the threshold. The scale-free and small-world effect of the knowledge networks at level are verified. [ Result/conclusion] The correlation frequency distributions of the knowledge networks match power-law dis- tribution. The knowledge networks at level, which take the correlation frequency as the threshold, keep the scale-free of whole original networks at nodes degree distribution and correlation frequency distribution. The knowledge networks at lev- el can keep the small-world characteristics of the original network well. The knowledge network at level based on correla- tion frequency is equivalent to the original knowledge network.
出处 《图书情报工作》 CSSCI 北大核心 2017年第14期132-140,共9页 Library and Information Service
基金 国家自然科学基金项目"基于网络结构演化的Folksonomy模式中社群知识组织与知识涌现研究"(项目编号:71473035)研究成果之一
关键词 知识网络 幂律 无标度 分形 层次网络 knowledge network power-law scale-free fractal network at level
  • 相关文献

参考文献5

二级参考文献85

  • 1刘则渊,尹丽春.国际科学学主题共词网络的可视化研究[J].情报学报,2006,25(5):634-640. 被引量:99
  • 2赵蓉英.论知识网络的结构[J].图书情报工作,2007,51(9):6-10. 被引量:74
  • 3Su H N, Lee P C. Mapping knowledge structure by keyword co - occurrence:A first look at journal papers in Technology Foresight [ J]. Scientometrics, 2010, 85 ( 1 ) : 65 - 79.
  • 4Wasserman S, Faust K. Social network analysis : Methods and appli-cation [ M ]. New York: Cambridge University Press, 1994:25.
  • 5Klimek P, Thurner S. Triadic closure dynamics drives scaling laws in social multiplex networks [ J ]. New Journal of Physics, 2013, 15 (6) : 063008.
  • 6Li Menghui, Zou Hailin, Guan Shuguang, et al. A coevolving mod- el based on preferential triadic closure for social media networks [J]. Scientific Reports, 2013, 3: 2512.
  • 7Lou Tiancheng, Tang Jie, Hopcroft J, et al. Learning to predict re- ciprocity and triadic closure in social networks [ J ]. ACM Transac- tions on Knowledge Discovery from Data ( TKDD ) , 2013, 7 ( 2 ) : 5.
  • 8Triadic closure[ CP/OL]. [ 2013 -07 -25 ]. http://en, wikipe- dia. org/wiki/Triadic closure.
  • 9Heider F. The psychology of interpersonal relations[ M]. New York: Wiley, 1958.
  • 10Mollenhorst G, V~lker B, Flap H. Shared contexts and triadic clo- sure in core discussion networks ~ J]. Social Networks, 2011, 33 (4) : 292 -302.

共引文献67

同被引文献77

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部