摘要
在对称重设备数字化改造的过程中,有些研究人员提出了对某一特定传感器的故障诊断方法,但对于非指定传感器或者两个传感器同时发生故障的情况却没有检测方法。为此,本文提出了一种基于径向基神经网络预测的任意一个或两个称重传感器的故障检测方法。本文首先建立单个传感器的预测模型和任意两个传感器的预测模型,然后通过这两个预测模型计算出任意一个称重传感器的预测值和任意两个传感器的预测值,根据预测值与实际值之间的差值判断称重传感器故障个数、位置、类型等信息。实验表明,当称重传感器的输出误差大于0.3 t时使用此方法可以准确检测出称重传感器的故障信息。
In the process of digitalization of weighing equipment, some researchers have proposed some faultdiagnosis methods for a particular sensor, but for non-specific sensor or two fault sensors, situation these methods are not ap- plicable. So, this paper presents a method foranyone sensor or two sensors based on RBFNN. Firstly, this paperestab- lish the prediction model of any single sensor and prediction model of any two sensors, and thencalculate any one weighing sensor, s predictive value and any two sensors, predictions ,judging the fault weighing sensor, s number, lo- cation, type through the difference between predicted value and actual value. Experiments show that this method can accurately detect the fault information of the sensor when the error of the sensor is above 0.3 tons.
出处
《传感技术学报》
CAS
CSCD
北大核心
2017年第6期861-866,共6页
Chinese Journal of Sensors and Actuators
基金
江苏省科技支撑重点项目(BE2014003)
江苏省自然科学基金项目(BK20161149)
关键词
称重传感器
故障检测
故障类型识别
径向基神经网络
weighing sensor
fault detection
fault type identification
radial basis function neural network