期刊文献+

基于径向基神经网络的称重设备传感器故障检测方法 被引量:10

Fault Detection Method for Weighing Equipment Sensor Based on Radial Basis Function Neural Network
在线阅读 下载PDF
导出
摘要 在对称重设备数字化改造的过程中,有些研究人员提出了对某一特定传感器的故障诊断方法,但对于非指定传感器或者两个传感器同时发生故障的情况却没有检测方法。为此,本文提出了一种基于径向基神经网络预测的任意一个或两个称重传感器的故障检测方法。本文首先建立单个传感器的预测模型和任意两个传感器的预测模型,然后通过这两个预测模型计算出任意一个称重传感器的预测值和任意两个传感器的预测值,根据预测值与实际值之间的差值判断称重传感器故障个数、位置、类型等信息。实验表明,当称重传感器的输出误差大于0.3 t时使用此方法可以准确检测出称重传感器的故障信息。 In the process of digitalization of weighing equipment, some researchers have proposed some faultdiagnosis methods for a particular sensor, but for non-specific sensor or two fault sensors, situation these methods are not ap- plicable. So, this paper presents a method foranyone sensor or two sensors based on RBFNN. Firstly, this paperestab- lish the prediction model of any single sensor and prediction model of any two sensors, and thencalculate any one weighing sensor, s predictive value and any two sensors, predictions ,judging the fault weighing sensor, s number, lo- cation, type through the difference between predicted value and actual value. Experiments show that this method can accurately detect the fault information of the sensor when the error of the sensor is above 0.3 tons.
出处 《传感技术学报》 CAS CSCD 北大核心 2017年第6期861-866,共6页 Chinese Journal of Sensors and Actuators
基金 江苏省科技支撑重点项目(BE2014003) 江苏省自然科学基金项目(BK20161149)
关键词 称重传感器 故障检测 故障类型识别 径向基神经网络 weighing sensor fault detection fault type identification radial basis function neural network
  • 相关文献

参考文献7

二级参考文献51

  • 1徐蔚鸿,谢中科,杨静宇,叶有培.两类模糊推理算法的连续性和逼近性[J].软件学报,2004,15(10):1485-1492. 被引量:19
  • 2肖兴华.称重传感器亚健康及早诊断的方法[J].衡器,2007,36(1):41-42. 被引量:3
  • 3王祯荣.浅谈电子汽车衡秤台结构与刚度计算[J].衡器,1997(1):24-26. 被引量:9
  • 4BLISS D, STICKEL C. BENTZ J W. Load cell diagnostics and failure prediction weighing apparatus and process[P]. United State Patent: 728638, 2000.
  • 5KAI G, YAN W Z. Correcting senor drift and intermittency faults with data fusion and automated learning[J]. IEEE Systems Journal, 2008, 2(2): 189 - 197.
  • 6WEI S Z, JIN N D. Fault diagnosis system based on information fusion and embedded intemet[C]//Proceedings oflEEE International Conference on Integration Technology. China: IEEE Press, 2007:203 - 207.
  • 7XU K J, LI Q L, MEI T, et al. Estimation of wrist force/torque using data fusion of finger force sensors[J]. Measurement, 2004, 36(1): 11 -19.
  • 8FAN C L, JIN Z H, ZHANG J, et al. Application of multi-sensor data fusion based on RBF neural networks for fault diagnosis of SAMS[C] //Proceedings of IEEE the 7th International Conference on Control, Automation, Robotics and Vision (ICARCV'02). Singapore: IEEE Press, 2002:1557 - 1562.
  • 9ZHANG J, WANG B S, MAY G, et al. Fault diagnosis of sensor network using information fusion defined on different reference sets[C] //Proceedings of IEEE International Conference on Radar(CIE'06). China: IEEE Press, 2006:1 - 5.
  • 10NICOLAO B K. Reformulated radial basis neural networks trained by gradient descent[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 657 - 671.

共引文献29

同被引文献98

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部