期刊文献+

基于边缘检测和特征融合的自然场景文本定位 被引量:5

Text Localization Based on Edge Detection and Features Fusion in Natural Scene
在线阅读 下载PDF
导出
摘要 文本定位作为文本识别的基础和前提,对图像深层信息的理解至关重要。针对自然场景下的文本定位受光照、复杂背景等因素影响较大的问题,提出了一种基于多方向边缘检测和自适应特征融合的自然场景文本定位方法。该方法首先将自然场景图像进行三通道八方向的边缘检测;然后通过启发式规则对得到的边缘图像进行过滤从而提取出备选文本域,进而对备选文本域进行自适应权值的HOG-LBP特征提取与融合;最后采用支持向量机进行特征分类学习,实现文本定位。实验结果表明,该方法能准确定位自然场景图片的文本区域,对光照和复杂背景具有较强的鲁棒性。 As the basis and premise of text recognition, text localization has an important influence on the analysis of images. Since the text localization in natural scene can be effected by illumination and the complex backgrounds signifi- cantly, we proposed a text localization method based on edge detection and features fusion. The method began with edge detection from three channels and eight directions, and then we filtered the detected edge images with heuristic rules to extract candidate text regions. On top of that, the HOG-LBP features were extracted and fused by adaptive weights. Fi- nally,we applied support vector machine (SVM) to classify the candidate regions and realized text localization. Experi- mental results indicate that the proposed method can locate the text region accurately in natural scene images while re- ducing the influence of illumination and complex backgrounds effectively.
出处 《计算机科学》 CSCD 北大核心 2017年第9期300-303,314,共5页 Computer Science
基金 国家自然科学基金项目(61673244) 高等学校博士学科点专项科研基金资助课题(20130131110038)资助
关键词 自然场景 文本定位 边缘检测 特征融合 Natural scene,Text localization,Edge detection,Feature fusion
  • 相关文献

参考文献1

二级参考文献15

  • 1GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 2Jung K,Kim K I,Jain A K.Text information extraction in images and video:a survey[J].Pattern Recognition,2004,37(5):977-997.
  • 3Pan Y F,Hou X,Liu C L.Text localization in natural scene images based on conditional random field[C]//Proceedings of IEEE 10th International Conference on Document Analysis and Recognition(ICDAR),2009:6-10.
  • 4Shivakumara P,Phan T Q,Tan C L.A Laplacian approach to multi-oriented text detection in video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):412-419.
  • 5Lucas S M.ICDAR 2005 text locating competition results[C]//Proceedings of the International Conference on Document Analysis and Recognition(ICDAR),2005:80-84.
  • 6Epshtein B,Ofek E,Wexler Y.Detecting text in natural scenes with stroke width transform[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR),2010:2963-2970.
  • 7Yi C C,Tian Y L.Text string detection from natural scenes by structure-based partition and grouping[J].IEEETransactions on Image Processing,2011,20(9):2594-2605.
  • 8Ye J,Huang L L,Hao X L.Neural network based text detection in videos using local binary patterns[C]//IEEEChinese Conference on Pattern Recognition(CCPR),2009:1-5.
  • 9Hanif S M,Prevost L.Text detection in natural scene images using spatial histograms[C]//Proceedings of the2nd Workshop on Camera Based Document Analysis and Recognition(CBDAR),2007:122-129.
  • 10Yi C C,Tian Y L.Text detection in natural scene images by stroke gabor words[C]//Proceedings of the IEEE International Conference on Document Analysis and Recognition(ICDAR),2011:177-181.

共引文献4

同被引文献38

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部