期刊文献+

基于关联规则与信息熵的技术融合趋势研究 被引量:8

Research on the Trend of Technology Convergence Based on Association Rules and Information Entropy
在线阅读 下载PDF
导出
摘要 根据从德温特专利数据库中检索的专利数据,运用Apriori关联规则算法得到关于技术融合趋势的关联规则,然后通过基于差异思想的兴趣度模型验证规则的有效性,并在关联规则基础上利用信息熵评估企业核心技术领域分布及变化情况。最后,以安川电机和发那科公司为例进行实证分析。研究结果显示,基于差异思想的兴趣度模型弥补了关联规则因阈值设置主观性较强而导致部分规则无效的问题。 Based on the patent data of Derwent Innovations Index, using Apriori Association Rules Algorithm to get associ-ation rules about technological convergence trend, then the validity of the rules can be tested by the different ideological in-terest model,on the basis of the rules,we can use the information entropy to evaluate the core technology area in the en-terprise ,and the changes over time. The framework of the different ideological interest degree model based on associationrules can compensate some invalid rules caused by the threshold setting,that is , subjectivity is much stronger. The re-search take the Yaskawa and Fanuc Ltd as an example, and then come to the conclusion: the results proand effectiveness of the framework, and provide guidance for small and medium sized enterprises in the selection of key de-velopment technologies and products.
出处 《科技进步与对策》 CSSCI 北大核心 2017年第16期1-6,共6页 Science & Technology Progress and Policy
基金 国家社会科学基金重大项目(11&ZD140) 北京市教委青年拔尖人才培育计划项目(011000543114502)
关键词 技术融合 关联规则 兴趣度模型 信息熵 Technological Convergence Association Rule Interestingness Mode Information Entropy
  • 相关文献

参考文献6

二级参考文献62

  • 1罗可,郗东妹.采掘有效的关联规则[J].小型微型计算机系统,2005,26(8):1374-1379. 被引量:12
  • 2汤文仙.技术融合的理论内涵研究[J].科学管理研究,2006,24(4):31-34. 被引量:36
  • 3马占欣,周文刚,陆玉昌.基于最小提升率的正负关联规则挖掘[J].计算机工程与应用,2007,43(7):170-172. 被引量:7
  • 4左万利 刘居正.包含正负属性的关联规则及其挖掘.第十六届全国数据库学术会议论文集[M].兰州,1999.288-292.
  • 5Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C]//Proc.of the 20th International Conference on Very Large Data Bases.Santiago,Chile:[s.n.],1994:487-499.
  • 6Agrawal R,Srikant R.Mining Quantitative Association Rules in Large Relational Tables[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:1-12.
  • 7Fukuda T,Morimoto Y.Mining Optimized Association Rules for Numeric Attributes[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:182-191.
  • 8Zhang Zhaohui,Lu Yuchang,Zhang Bo.An Effective Partitioning Combining Algorithm for Discovering Quantitative Association Rules[C]//Proc.of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Singapore:[s.n.],1997:241-251.
  • 9Chien Been-chian,Lin Zin-long,Hong Tzung-pei.An Efficient Clustering Algorithm for Mining Fuzzy Quantitative Association Rules[C]//Proc.of IFSA World Congress and NAFIPS International Conference.Vancouver,Canada:[s.n.],2001:1306-1310.
  • 10Cover T M,Thomas J A.Elements of Information Theory[M].[S.1.]:John Wiley & Sons,Inc.,1991.

共引文献200

同被引文献94

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部