期刊文献+

结合分块噪声估计的字典学习图像去噪算法 被引量:5

Image denoising algorithm combined with dictionary learning and blocked-based noise estimation
在线阅读 下载PDF
导出
摘要 近年来K-SVD字典学习去噪算法因其耗时短、去噪效果好的特点得到广泛关注和应用,但该算法的适用条件为图像的噪声为加性噪声且噪声标准差已知。针对这一情况,先提出一种平滑图像块筛选方法,并将其与奇异值分解(singular value decomposition,SVD)相结合实现对图像的噪声标准差估计;再将得到的噪声估计方法与K-SVD字典学习去噪算法结合起来,提出一种具备噪声估计特性的K-SVD字典学习去噪算法。对多种图像的去噪实验结果表明,与Donoho小波软阈值去噪算法、全变分(total variation,TV)去噪算法相比,该算法不仅能够使去噪后图像的峰值信噪比提升1~3 dB,并且能较好地保留图像的细节信息和边缘特征。 In recent years, the K-SVD dictionary learning denoising algorithm has been widely concerned and applied because of its short time consuming and outstanding performance. But the application of this algorithm requires that the noise in image is additive noise and standard deviation of the noise is known. In view of this situation, this paper proposed a method to select the smooth image blocks and combined it with the singular value decomposition (SVD) to achieve the estimation of the noise standard deviation of the image. Then it proposed a new denoising algorithm which had the characteristic of noise estimation combining with the obtained noise estimation method and the K-SVD dictionary learning denoising algorithm. Experimental resuits of denoising some images show that, compared with Donoho wavelet soft threshold denoising algorithm and the total variation (TV) denoising algorithm, not only the peak signal to noise ratio(PSNR) of the image denoised by the proposed algorithm is improved by about 1 - 3 dB, but also the detailed information and edge features of the image can be better preserved.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期3153-3156,3161,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(51208168) 天津市自然科学基金资助项目(13JCYBJC37700) 河北省自然科学基金资助项目(E2016202341) 大学生创新创业训练计划项目(河北省重点)(201510080051)
关键词 图像去噪 平滑图像块 奇异值分解 噪声估计 字典学习 image denoising smooth image block singular value decomposition noise estimation dictionary learning
  • 相关文献

参考文献2

二级参考文献35

  • 1赵勇,郭鹏.自适应阈值的小波噪声消除方法及其在消除心电图(ECG)噪声方面的应用[J].生物医学工程学杂志,2008,25(3):531-535. 被引量:4
  • 2谢搴,詹毅,牛聪.小波阈值去噪黄金分割法[J].物探与化探,2006,30(3):254-257. 被引量:6
  • 3叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 4MALLATS 杨力华 戴道清 黄文良译.信号处理的小波导引[M].北京:机械工业出版社,2002.124-132.
  • 5Mallat S.A wavelet tour of signal processing[M].California:Academic Press,1999.
  • 6Donoho D L.Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 7Agante P M,Marques J P.ECG noise filtering using wavelet with soft-thresholding methods[J].Computers in Cardiology,1999,26:523-538.
  • 8Ucar F N,Korurek M,Yazgan E.A noise reduction algorithm in ECG signals using wavelet transform[C]//Biomedical Engineering Proceedings of the 1998 2nd International Conference,1998:187-192.
  • 9Watanabe Y. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit[J]. Journal of Biomedical Optics, 2012, 17(5): 050503-1-050503-3.
  • 10Alpert S, Galun M, Brandt A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2012, 34(2):315-327.

共引文献19

同被引文献31

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部