期刊文献+

基于时空与或图模型的视频人体动作识别方法 被引量:6

Video Human Action Recognition Based on Spatial Temporal And-Or Graph Model
在线阅读 下载PDF
导出
摘要 针对视频中的人体动作识别问题,提出一种基于时空与或图(AOG)模型的人体动作识别方法,将动作识别和姿态估计共同建模在一个时空AOG模型中。首先,将动作分解为姿态,进一步将姿态分解为多个时空(ST)部件,再将ST-部件分解为多个子部件,从而形成三层模型;然后,在三层上分别提取粗级、中级和细级特征;最后,分别学习3个级别上的模型参数,训练隐含参数支持向量机(Latent SVM)分类器,实现动作识别。通过大型数据集的测试以及与几种最新方法的比较,证明了该方案的有效性,识别精度能够达到94%左右。 For the issues of the human action recognition in video, a human motion recognition scheme based on spatial temporal AOG model is proposed, in which the action recognition and pose estimation are modeled in a AOG model. First, the action is decomposed into some poses, then the poses are decomposed into multiple spatial temporal (ST) parts, and the ST-parts are decomposed into multiple sub parts, so as to form the three-layer model. Then, the coarse-level, mid-level and fine-level features are extracted respectively. Finally, the model parameters from three levels are learned to train the latent parameters support vector machine (Latent SVM) classifier, and finally realizes the action recognition. Experiments are carried out on several data sets, and compared with several new methods. The experimental results demonstrate the effectiveness of the scheme, and the recognition accuracy can reach about 94 %.
作者 易唐唐
出处 《控制工程》 CSCD 北大核心 2017年第9期1792-1797,共6页 Control Engineering of China
基金 湖南省教育厅科学研究青年基金资助项目(12B066)
关键词 人体动作识别 与或图模型 姿态估计 隐含参数支持向量机 时空特征学习 Human action recognition and-or graph modeh pose estimation latent SVM ST feature learning
  • 相关文献

参考文献5

二级参考文献63

  • 1李庆,师小凯.基于隐马尔科夫模板模型的视频动作识别算法[J].武汉理工大学学报(信息与管理工程版),2013,35(6):789-793. 被引量:1
  • 2柯长青,欧阳晓莹.基于元胞自动机模型的城市空间变化模拟研究进展[J].南京大学学报(自然科学版),2006,42(1):103-110. 被引量:23
  • 3祁红志,徐惠益.机电产品面向拆卸与回收的设计理论与方法[J].现代制造工程,2007(6):134-138. 被引量:16
  • 4George E. Brief history of crossword puzzles. crosswordtournament, com, 1996.
  • 5Cohen D,Jeavons P, Gyssens M. A untied theory of structural tractability for constraint satisfication problems. Journal of Computer and System Science, 2008,74(5) ..721-743.
  • 6Gottlob G, Leone N, Scarcello F. A comparison of structural CSP decomposition methods. Artificial Intelligence, 2000,124(2) : 24a - 282.
  • 7Gottlob G, Leone N, Scarcello F. Hypertree decompo- sitions and tractable queries. Journal of Computer and System Sciences, 2002,64 (3) : 579 - 627.
  • 8Dechter R. Constraint processing. San Francisco: Elsevier Science, 2003,1 - 25.
  • 9Apt K. Principles of constraint programming. Cambridge: Cambridge University Press, 2003,9- 10.
  • 10Hooker N J. Logic, optimization and constraint programming. Informs Journal on Computing, 2002,14(4) : 295- 321.

共引文献18

同被引文献43

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部