期刊文献+

一种针对MSER区域的双层匹配策略 被引量:1

A Two-step Matching Strategy for MSERs
在线阅读 下载PDF
导出
摘要 为了快速高效地采用图像的最大稳定极值区域(MSER)进行图像匹配,提出了一种针对归一化MSER区域的双层匹配策略。对于待匹配图像的MSER区域进行归一化之后,采用互相关性进行区域的粗匹配;再将候选匹配区划分为4×4个子区域,计算对应子区域的hausdorff距离,作为投票依据,根据投票多少从候选匹配对中选择最优匹配对作为最终的匹配结果。采用标准图像库及实拍红外图像进行了2组实验,实验结果表明,该方法能够较好地完成图像匹配任务。提出了一种针对MSER区域的双层匹配策略,采用标准图像库及红外实拍图像进行了匹配试验。实验结果表明,方法简单高效,匹配效果较好。 To quickly and efficiently conducting the image matching task using the Maximally Stable Extremal Regions( MSER),this paper presents a novaltwo-step matching strategy for the normalized MSER regions.After the MSER regions extracted from images to be matched are normalized,the coarse matching is performed by using cross correlation; the candidate regions are divided into 4 × 4subregions,the hausdorff distance of the corresponding sub-regions is calculated,and the results are used as the voting basis.Depending on the voting results,the best matching pairs are chosen from the candidates as the final matches. The two experiments are conducted by using standard image database and real infrared images respectively.The experimental results show that the proposed method can better complete the image matching task. This paper presents a two-step matching strategy for MSER regions,and the two matching experiments are conducted by using standard image database and infrared images respectively. The results show that this method is simple and efficient,and has better matching effect.
作者 王建永 常伟
出处 《无线电工程》 2017年第10期68-72,共5页 Radio Engineering
关键词 最大稳定极值区域 双层匹配策略 互相关性 HAUSDORFF距离 图像识别 MSER two-step matching strategy cross correlation hausdorff distance image recognition
  • 相关文献

参考文献5

二级参考文献49

  • 1陈鹰,于晶涛.INSAR复数影像配准方法研究[J].计算机工程与应用,2005,41(8):13-15. 被引量:8
  • 2Ralph J and Stocks N. Fusion of low bit-depth images for battle damage indication [C]. Proceedings of the 13th IEEE Conference on Information Fusion (FUSION), Edinburgh, 2010: 1-6.
  • 3Hahn D A, Daum V, and Hornegger J. Automatic parameter selection for multimodal image registration [J]. IEEE Transactions on Medical Imaging, 2010, 29(5): 1140-1155.
  • 4Alberga V. Similarity measures of remotely sensed multi- sensor images for change detection applications [J]. Remote Sensing, 2009, 1(3): 122-143.
  • 5Lee J H, Kim Y S, and Lee D, et al.. Robust CCD and IR image registration using gradient-based statistical information [J]. IEEE Signal Processing Letters, 2010, 17(4): 347-350.
  • 6Li H, Manjunath B S, and Mitra S K. A contour-based approach to multisensor image registration [J]. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 7Matas J, Chum O, and Urban M, et al.. Robust wide-baseline stereo from maximally stable extremal regions [J]. Image Vision Computing, 2004, 22(10): 761-767.
  • 8Donoser M, Riemenschneider H, and Bischof H. Shape guided maximally stable extremal region (MSER) tracking [C]. Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, 2010: 1800-1803.
  • 9Donoser M, Arth C, and Bischof H. Detecting, tracking and recognizing license plates [C]. Proceedings of the 8th Asian Conference on Computer Vision, Tokyo, 2007, 2: 447-456.
  • 10Mikolajczyk K, Tuytelaars T, and Schmid C, et al.. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2006, 65(1/2): 43-72.

共引文献32

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部