期刊文献+

采用低秩与加权稀疏分解的视频前景检测算法 被引量:8

Video Foreground Detection by Low-Rank and Reweighted Sparse Decomposition
在线阅读 下载PDF
导出
摘要 传统的鲁棒主成分分析模型能较好地解决视频前景检测问题.但是,若该模型的假设条件不能满足,算法性能会变差.针对此问题,本文提出了一种低秩与加权稀疏分解模型,通过对前景矩阵加权以增强其稀疏性.在建立加权矩阵的过程中,采用光流法获取每帧的运动矢量,以区分真实运动区域.其次,进一步提出一种增强模型,通过将加权矩阵作用于观测矩阵及背景矩阵,防止前景与背景的错误分离.实验结果表明,在无噪和有噪的情况下,提出的算法均能有效地分离监控视频中的前景和背景. The traditional robust principal component analysis( RPCA) model is able to solve the video foreground detection problem well. However,if the basic assumptions are violated,this model will have poor performance. This paper proposes a lowrank and reweighted sparse decomposition model,where the foreground matrix is reweighted so as to enhance its sparsity. When the weighting matrix is established,the optical flowmethod is used to get the motion vectors in each frame in order that the real moving areas can be recognized. Afterwards,based on the newly proposed model,an enhanced decomposition model is also developed. Since the weighting matrix is applied to both the observation matrix and the background matrix,the enhanced model is able to prevent the foreground and the background from being wrongly separated. Experimental results showthat the proposed algorithm can efficiently separate foreground and background components for video clips with or without noises.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第9期2272-2280,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61401108) 广西自然科学基金(No.2016GXNSFAA380154)
关键词 前景检测 运动目标检测 鲁棒主成分分析 低秩表示 光流法 foreground detection moving object detection robust principal component analysis(RPCA) low-rank representation optical flow method
  • 相关文献

参考文献2

二级参考文献93

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2熊伟,何友,张晶炜.多传感器顺序粒子滤波算法[J].电子学报,2005,33(6):1116-1119. 被引量:11
  • 3胡文龙,毛士艺.多传感器多目标跟踪中的概率数据互联[J].电子学报,1996,24(9):30-35. 被引量:8
  • 4单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 5Bar-Shalom Y, Fortmann T E. Tracking and Data Association [ M]. New York: Academic Press, 1988.
  • 6Fortrnann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association [J]. IEEE Journal of Oceanic Engineering, 1983,8(3) : 173 - 184.
  • 7Blackman S. Multiple hypothesis tracking for multitarget tracking [J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(1) :5 - 18.
  • 8Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD filter for multitarget tracking [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(3) : 778 - 795.
  • 9Pollard E, Pannetier B, Rombaut M. Hybrid algorithms for multitarget tracking using MHT and GM-CPHD [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47 (2) : 832 - 847.
  • 10Mahler R P S. Statistical Multisouce-Multitarget Information Fusion [M].Norwood,MA:Artech House,2007.

共引文献116

同被引文献22

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部