期刊文献+

大数据环境下基于科研用户小数据的图书馆个性化科研服务研究 被引量:28

Research on the Personalized Scientific Research Service Based on Small Data of Scientific Research Users in Library under the Big Data Environment
在线阅读 下载PDF
导出
摘要 [目的/意义]为准确发现科研用户需求并预测其发展趋势,实现图书馆科研服务的个性化定制与推送。[方法/过程]通过科研用户小数据与图书馆个性化推送服务契合性分析,利用科研用户小数据决策支持层和图书馆个性化科研服务推送层构建基于科研用户小数据的图书馆个性化科研服务模式并提出应注意的问题。[结果/结论]结果表明,科研用户小数据能够准确体现科研需求和行为特征,为图书馆个性化科研服务决策制定和模式构建提供支撑作用。 [ Purpose/significance] This paper aims to find out the needs of scientific research users and predict the trend of development, as well as to realize the personalized customization and push of library scientific research service. [ Method/process ] Through the correspondence between small data of scientific research users and the personalized push service of library, the paper constructs a personalized scientific research service model based on the decision support layer of small data and push layer of person- alized scientific research service. The possible problems during the process are proposed. [ Result/conclusion ] Results show that small data of scientific research users can accurately reflect the scientific research needs and behavior characteristics, and they can provide support for library decision-making and model construction.
出处 《情报理论与实践》 CSSCI 北大核心 2017年第10期85-90,95,共7页 Information Studies:Theory & Application
基金 黑龙江省哲学社会科学研究规划2016年度项目"‘互联网+’背景下数字图书馆知识推送服务模式的构建研究"的成果 项目编号:16TQB04 成果形式:论文集 研究报告
关键词 大数据 科研用户 小数据 图书馆 个性化服务 big data scientific research user small data library personalized service
  • 相关文献

二级参考文献165

  • 1庞秀丽,冯玉强,姜维.电子商务个性化文档推荐技术研究[J].中国管理科学,2008,16(S1):581-586. 被引量:10
  • 2熊志军.试论小科学与大科学的关系[J].科学学与科学技术管理,2004,25(12):5-8. 被引量:14
  • 3北京大学图书馆[EB].http:∥www.1ib.pku.edu.cn/portal/in-dax.jsp,2011-02-10.
  • 4武汉大学图书馆[EB].http://www.1ib.whu.edu.cn/web/de-fault.asp.2011-02-06.
  • 5.清华大学图书馆[EB].http:∥www.lib.tsinghua.edu.cn,2004.4.8.
  • 6维克托·迈尔-舍恩伯格.大数据时代:生活、工作与思维的大变革[M].杭州:浙江人民出版社,2012(12).
  • 7Burke R. Hybrid Recommender Systems: Survey and Experiments |[ J ]. User Modeling and User - adapted Interaction, 2002,12 ( 4 ) : 331 -370.
  • 8Adomavicius G, Tuzhilin A. Toward the Next Generation of Rec- ommender Systems : A Survey of the State - of - the - art and Pos- sible Extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (6) :734 - 749.
  • 9Sarwar B, Karypis G, Konstan J, et al. Analysis of Recommenda- tion Algorithms for E - commerce[ C ]. In : Proceedings of the 2nd ACM Conference on Electronic Commerce. New York, NY, USA: ACM, 2000 : 158 - 167. Proceedings of.
  • 10Sarwar B, Karypis G, Konstan J, et al. Item - based Collaborative Filtering Recommendation Algorithms [ C ]. In : Proceedings of the lOth International Conference on World Wide Web. New York, NY, USA: ACM, 2001:285 -295.

共引文献188

同被引文献270

引证文献28

二级引证文献255

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部