期刊文献+

基于改进FFA算法的柔性制造车间调度方法 被引量:1

Flexible Manufacturing Workshops Scheduling Methods Based on Modified Five Factors Scheduling Algorithm
在线阅读 下载PDF
导出
摘要 针对某小型精密模具加工企业柔性制造车间离散型生产方式下调度困难的情况,笔者提出了一种改进的启发式算法——改进五因素调度算法(five factors scheduling algorithm,FFA)。算法考虑了可能影响选择排序的5个因素,即当前任务待排工序可能开始加工时间、待排工序工时、可用设备剩余加工时间、本工序完成后本任务剩余加工时间以及本工序之后本任务将要到达的紧后设备上的剩余加工时间,最大化前3个因素,最小化后2个因素,所构造评价指数最小时,该任务优先排序。并对构造的评价指数公式进行了改进,为5个因素选取合适系数,降低了计算复杂度。最后通过试验与遗传算法进行比较,证明了该算法在缩短最大完工时间和提高计算速度方面更有优势。 To solve the discrete manufacturing of flexible manufacturing workshop in a small precision mold processing enterprise, a modified heuristic algorithm (five factors scheduling algorithm, FFA) was proposed. This algorithm took into account five factors that may affect the sort of selection, i. e. , processing start time of current task procedures, processing working time of current procedure, remaining processing time of current device, the total remaining processing time of the task after current procedure, and the remaining processing time after the task reaching the next device upon the completion of current procedure. When the constructed evaluation index was the smallest through maximizing the first three factors and minimizing the last two factors, the task was prioritized. In addition, the evaluation index formulae was improved to select the appropriate coefficient for five factors, hence reducing the calculation complexity. Finally, compared with the genetic algorithm, it is proved that the modified algorithm has more advantages in shortening maximum completion time and improving calculation speed
作者 王鸿超 陈进 董功云 WANG Hongchao CHEN Jin DONG Gongyun(School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China)
出处 《轻工机械》 CAS 2017年第5期32-36,共5页 Light Industry Machinery
关键词 生产调度 柔性制造 启发式算法 五因素调度算法(FFA) 评价指数公式 production scheduling flexible manufacturing heuristic algorithm FFA ( five factors scheduling algorithm) evaluation index formulae
  • 相关文献

参考文献8

二级参考文献61

  • 1胡雅丽,杨建军.基于约束规则的作业车间调度研究[J].航空精密制造技术,2012,48(5):43-46. 被引量:4
  • 2谢规良,孙树栋,刘冉,倪颖杰.基于关键设备的计划调度模型与应用[J].航空制造技术,2003,46(5):37-39. 被引量:7
  • 3张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:116
  • 4王丹,张浩.离散制造业APS生产数据结构的研究及应用[J].机电一体化,2007,13(2):25-28. 被引量:5
  • 5Garey E L,Johnson D S, Sethi R. The complexity of flowshop and job-shop scheduling [J]. Mathematics of Operations Research, 1976,1 : 117-129.
  • 6Montazeri M, Van W. Analyses of scheduling rules for an FMS [J]. Int. J. Prod. Res. , 1990,28 : 785-802.
  • 7Chen H,IhlowJ, Lehmann C. A Genetic Algorithm for Flexible Job-Shop Scheduling [ R]. IEEE International Conference on Robotics and Automation. Detroit, 1999: 1120-1125.
  • 8Kacem S, Hammadi, Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[R]. IEEE Transaction Systems, Man, and Cybernetics-Part C, 2002,32( 1 ) : 1-13.
  • 9Zhang H P, Gen M. Multistage-based genetic algorithm for flexible job-shop scheduling prohlem [ J ]. Journal of Complexity, 2005,11 : 223-232.
  • 10Mastrolilli M, Gambardella L M. Effective neighbour-hood functions for the flexible job shop problem [J]. Journal of Scheduling, 2000,3 (1) : 3-20.

共引文献79

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部