摘要
LC滤波H6结构逆变器(LCI–H6)广泛应用于高压电力设备中,为了解决其精确离散模型运算复杂的问题,提出了一种将精确离散模型简化的新方法。首先,采用频闪映射法建立了电感电流和电容电流双闭环控制H6结构逆变器(ICDLCI–H6)系统的精确离散模型;接着,采用简化方法对精确离散模型进行了简化,并推导了电感电流i的2个工作边界;然后,对外环比例系数kp变化的动力学行为进行了分析。最后,采用Simulink仿真和实验对简化模型及动力学行为分析的正确性进行了验证。研究结果表明:ICDLCI–H6系统呈现由稳定的周期1态经倍周期分岔进入周期2态,再由周期2态经边界碰撞分岔进入混沌态的动力学演化过程;新型简化方法可有效简化离散迭代计算的运算过程、提高运算速度,降低了数值仿真占用的计算机内存空间。研究得出的稳定域可为ICDLCI–H6系统控制参数的选择提供可靠依据。
LC-filter-based inverter with H6-type(LCI-H6) is widely employed in high voltage equipment.To solve the problem of computational complexity of precise discrete modeling in LCI-H6,we proposed a novel method that simplified precise discrete modeling.Firstly,precise discrete modeling of the inductance current and capacitance current double closed loop controller LC-filter-based inverter with H6-type(ICDLCI-H6) system was established based on the stroboscopic method.Secondly,precise discrete modeling was simplified by the simplified method.Meanwhile,the two collision border lines of the inductance current i were studied.Thirdly,the dynamical evolution process for changing the proportional coefficient kp was analyzed.At last,the Simulink simulation and the experimental results verified the correctness of simplified discrete modeling and dynamic behavior.Results show that the ICDLCI-H6 system varies from the period-1 state to the period-2 state through the period-doubling bifurcation,and then,enters chaos from the period-2 state through the border-collision bifurcation.The new simplified method effectively simplifies the operation process of discrete iteration,increases the operation speed,and decreases the computer memory usage of numerical simulation.The stability domain obtained from the study can be used to choose control parameters for ICDLCI–H6 system.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2017年第10期3313-3321,共9页
High Voltage Engineering
基金
国家自然科学基金(61310306022)
油气探测与信息技术四川省高校科研创新团队(15TD008)
四川省科技厅应用基础项目(2014JY0208)~~
关键词
LC滤波H6结构逆变器
精确离散模型
简化方法
动力学行为
边界碰撞分岔
稳定域
LC-filter-based inverter with H6-type
precise discrete modeling
simplified method
dynamical behavior
border-collision bifurcation
stability domain