期刊文献+

基于小波变换与ICA结合的EP信号提取研究 被引量:9

Independent wavelet transform and component analysis in EP signal extraction
在线阅读 下载PDF
导出
摘要 针对脑电信号非侵入采集造成被采集信号中含有较多高频噪声信号并且信号难以被干净分离的特点,设计一种将独立分量分析法(ICA)与小波变换法相结合的一种改进型算法,实现对已分离的脑电信号降噪提取作用。通过小波变换,滤除目标信号中的高频信号,将该信号重构为ICA算法的输入信号,克服独立分量分析法不能区分噪声的缺点。将两种方法结合提取脑电信号中诱发电位的提取,将小波包滤波后的信号重构为ICA的输入信号,有效的降低了噪声信号对EP信号的影响,在信源分离中取得了良好的效果。 The EEG acquisition caused by non-invasive acquisition,which make the characteristics of signal contains more high frequency signal and the signal is difficult to separation cleanly,design a new method by combine component analysis(ICA)method with an improved algorithm combined with wavelet transform,to achieve the separation of EEG signal noising.The high-frequency signal in the target signal is filtered by Wavelet transform.And the output signal is reconstructed as the input signal of the ICA algorithm;overcome the independent component analysis method of genetic algorithm cannot distinguish the noise.This paper incorporates wavelet transform with ICA method based on genetic algorithm,and applicate them to evoked potentional extraction,the signal after wavelet packet filtering is reconstructed into the input signal of ICA,which get a good effect.
作者 刘超 林晓焕 廖文 高莹 Liu Chao Lin Xiaohuan Liao Wen Gao Ying(School of Electronics and Inform, Xi'an Polytechnic University, Xi'an 710048, China)
出处 《国外电子测量技术》 2017年第9期35-39,共5页 Foreign Electronic Measurement Technology
关键词 EP信号 独立分量分析 小波变换 信噪分离 EP signal independent component analysis wavelet transform signal-noise separation
  • 相关文献

参考文献12

二级参考文献113

共引文献197

同被引文献93

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部