期刊文献+

Radio-frequency arbitrary waveform generation based on dispersion compensated tunable optoelectronic oscillator with ultra-wide tunability

Radio-frequency arbitrary waveform generation based on dispersion compensated tunable optoelectronic oscillator with ultra-wide tunability
原文传递
导出
摘要 Photonic generation of radio-frequency(RF) arbitrary microwave waveform with ultra-wide frequency tunable range based on a dispersion compensated optoelectronic oscillator(OEO) is proposed and experimentally demonstrated. Dispersion compensation scheme and specially designed fiber Bragg grating(FBG)-based Fabry-Perot(F-P) filters are employed in the OEO loop to realize a frequency tunable range of 3.5-45.4 GHz. An optimization process provided by the combination of an erbium-doped fiber amplifier(EDFA)and FBG is employed to improve the signal-to-noise ratio(SNR) of final RF signals. The generation of linearfrequency and phase-coded microwave waveforms, with a tunable carrier frequency ranging from 4 to 45 GHz and tuned chirping bandwidths or code rates, is experimentally demonstrated. Photonic generation of radio-frequency(RF) arbitrary microwave waveform with ultra-wide frequency tunable range based on a dispersion compensated optoelectronic oscillator(OEO) is proposed and experimentally demonstrated. Dispersion compensation scheme and specially designed fiber Bragg grating(FBG)-based Fabry-Perot(F-P) filters are employed in the OEO loop to realize a frequency tunable range of 3.5-45.4 GHz. An optimization process provided by the combination of an erbium-doped fiber amplifier(EDFA)and FBG is employed to improve the signal-to-noise ratio(SNR) of final RF signals. The generation of linearfrequency and phase-coded microwave waveforms, with a tunable carrier frequency ranging from 4 to 45 GHz and tuned chirping bandwidths or code rates, is experimentally demonstrated.
作者 Anle Wang Jianghai Wo Jin Zhang Xiong Luo Kin Xu Daoming Zhang Pengfei Du and Lan Yu 王安乐;沃江海;张进;罗雄;徐馨;张道明;杜鹏飞;余岚(Microwave Photonics Center,Air Force Early Warning Academy)
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第10期33-37,共5页 中国光学快报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部